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Abstract—Complex care management (CCM) or hot spotting
programs identify and manage high-need/high-cost patients, im-
proving long-term health quality and medical costs. Typically,
physicians refer patients to CCM. Despite strict guidelines to
ensure that eligible patients are placed in appropriate programs,
such a provider-based approach is limited by provider-capacity
and the narrow view of a patient that a provider sees. We propose
an ML workflow to augment the provider-based approach, that
can flag patients who are suited to CCM. Our predictor uses a
global view of a patient’s entire history across multiple providers
and time to identify high-risk individuals from among all the
individuals in a matter of seconds. On a monthly basis, we
evaluate our predictions against physician referrals. In the test
dataset, 41% of the top-500 highest risk individuals found by our
model were referred to CCM by a physician at some point in the
6-month window following our prediction (top-500 is a parameter
that can be set to match the CCM program’s capacity). Of those
who were not referred in the 6-month window, 30% were referred
at some time in their trajectory. The remaining false positives had
a greater than 95% similarity when compared to true positive
physician referrals in terms of cost profiles (both prior to referral
and after referral) and patient profile. This remarkable similarity
suggests that our machine learning predictor can identify new
candidates for complex care management and/or predict referrals
before a physician has an opportunity to do so.

I. INTRODUCTION

earlier in their health trajectory can significantly improve
health outcomes and costs.

A. Decision Support for Complex Care Management

Either the physician or the health plan can enroll a patient in
CCM. Even though experts are responsible for CCM-referral,
qualified individuals can be missed: the physician/provider
network has limited capacity; physicians can only refer pa-
tients they see; a single physician may not see the entire
trajectory of a patient - a more global view of the patient
may be needed to identify them as in need of CCM. Our goal
is to augment physician-based CCM referral with ML based
predictive referrals. Our use-case is a non-profit insurance
company. Our approach is to learn from historical data on
physician referrals. This data poses challenges:

1) Non-stationarity: The healthcare landscape and physician
referral process are evolving.

2) Unbalanced data: Only 0.5% of people get referred.
3) Sparse data: The majority of patients (including referrals)

have no or very few events in their historical profile.
4) Incompletely labeled data: Physicians may only refer the

sickest patients and only when they see them. Several
eligible individuals may not get referred to CCM.

The general task is time-series event prediction. For a review
of event prediction algorithms, see [6]. Before predicting,
one must model the problem, and little work has addressed
modeling and evaluation. For CCM, we found that several
nuanced modeling choices to address specific challenges posed
by the CCM training data had big impact on performance
across all algorithmic approaches. We present effective ways
to deal with sparsity. We find that both windowing and
down-sampling of non-referral data have significant impact on
performance (see Section IV). Our methods have implications
for CCM and hot spotting, and more generally time series
event prediction when the event is rare.

II. FORMULATION OF THE CCM PREDICTION PROBLEM

Historical data on referrals provided by the domain experts
is central in our methods. Let P (for physician) denote the
existing referral process into CCM. The input to P is a
patient’s profile up to the time the decision is being made.
The profile is x ∈ X . One main design choice is how to
construct a patient’s profile x (see Section III and IV). The
process P either labels the profile x as a referral to CCM,

We propose a machine learning (ML) approach for referring 
patients to complex care management (CCM) and test our 
approach at a health plan provider in a small metropolitan area. 
Health care costs in the US are highly concentrated, with 5 
percent of patients consuming over 50 percent of resources [1]. 
One way to improve patient health and address this concen-
tration of expenses is “hot spotting” to identify the highest-
needs/highest-cost patients for programs like CCM [2]–[4]. 
While the benefits of hot spotting and interventions like CCM 
can be mixed [2]–[4], the sheer magnitude of costs and com-
plexity involved in serving the sickest patients motivates health 
insurance companies to improve outcomes while controlling 
spending. Predicting the at-risk patients is a challenging but 
key enabler of programs such as CCM [5].

Our approach is to predict CCM referral using prior physi-
cian referral-patterns and claims data provided by the insur-
ance provider. The goal is to predict the high-needs/high-cost 
individuals that would benefit f rom C CM, i n p articular those 
not already identified at a point of care. Finding such patients
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in which case x is labeled y = 1, or not, in which case x is
unlabeled. Non-referred patients are unlabelled, since they are
not specifically labeled as non-referrals by a domain expert.

P : X → {refer, no label}

One of the design choices in the ML workflow is how to deal
with the unlabeled data. The simplest approach treat unlabeled
data as non-referrals, y = 0. Alternatively, one can relabel
some unlabeled data if they were referred at a future time.

We obtain training data (x1, y1), . . . , (xN , yN ), where N is
the number of training data points, xi are patient profiles, and
yi = 1 if the patient was referred at that time or relabeled
as a referral, and yi = 0 otherwise. The task is to learn a
predictor P̂ that imitates the physician process P , possibly
referring additional non-referred CCM-patients or referring
referred patients, but perhaps earlier. We emphasize that our
goal here is not to produce the optimal candidates for CCM,
which would require data on who would benefit from CCM.
We are simply learning to mimic physician referral.

There challenges we address are: heavy class imbalance
(0.5% positive labels); partial labeling of just the minority
positive class; non-stationarity; and, sparse patient profiles.
Further, the target process P is not one process but the sum
of all the provider activity. This results in significant inhomo-
geneity and differing referral practices among physicians and
for different diagnoses, leading to bias in the labels.

III. DATA

Proprietary de-identified CCM data was provided by an
insurance company. The data is primarily derived from claims
but also has features from electronic medical records. The data
has two main parts: (1) the part used for obtaining the patient
profiles to construct the feature vector x for each patient on
each month, and (2) the part containing physician referrals
including the reasons for the referral.

Data Description. The data has about 22.5M patient records
for about 700K patients over 56 months from Oct. 2015 to
Jun. 2020. Each record is patient-month containing the patient
profile on that month: 69 diagnosis codes, 14 expenditure
categories, and demographic data such as gender and age.
The expenditures include total cost, prescription/pharmacy,
and in-patient care. The referral data contains information on
physician referrals to CCM at the patient-month level. The
label at each patient-month (referred or unlabeled) is obtained
from the referral records. We have 78,492 referral records for
42,050 patients, giving referral date and referral reason.

Training and Test Data. We use Jan. 2017 to Dec. 2018
to create training data (xi(t), yi(t)) of profile-label pairs for
every month t. Every patient could in principle contribute
24 training examples. The resulting training dataset contains
approximately 6.9 million patient records for 374,106 patients.
We had 13,383 training referral records from 11,219 patients
for the 2017-2018 time period.

We evaluate the learned predictor on 12 months after the
training period, Jan. 2019 to Dec. 2019. As with training data,

we extract profile-label pairs for every patient-month in the
test period, giving about 4.5M test examples on about 430K
patients with about 10K referral records on 8,303 patients.

Features. As already mentioned, we have 87 raw features of
3 types: diagnosis codes and disease counts, (e.g., diabetes);
expenditures in various categories, (e.g., in-patient, pharmacy);
demographics, (e.g., age and gender). Categorical variables
were mapped to a discrete numeric values. The majority of
such variables are diseases diagnoses which are present or
absent, and hence map to binary variables. As it is common
practice in healthcare, disease diagnosis codes are “sticky” and
persist for at least 12 months once given. The stickiness has
been determined by the domain experts at the health plan.
Despite this persistence in features, the data is still sparse. We
give a summary of the data statistics in table I

IV. METHODS

Our methodology has three stages.

1) Pre-processing for: a) Converting time-series data to
supervised data. b) Feature engineering, including center-
ing, scaling and possibly reducing dimension. c) Relabel-
ing data to augment the physician referrals, and possibly
down-sampling to address class imbalance.

2) Predictive Modeling to score each patient in a month. The
top-500 scores are the model positives. We used many
ML methods to model the physician process P .

3) A suite of tools to evaluate model predictions on test data,
assessing efficacy of rare event prediction in time series.

A. Pre-Processing

We address several challenges in the temporal data. First, it
is relatively straightforward to convert the time series data into
standard supervised data by treating each patient-month as a
distinct training example. Each patient profile gets its training
label from the referral data.

Next we address the sparsity of positive labels by relabeling
unlabeled examples using the fact that a patient’s state is
sticky. Hence, we relabel a month as a physician referral
(positive data point) if a physician referred the patient at
some point in the forward 6-month window (6-months is a
parameter, which for simplicity we keep fixed in this study).
This propagates physician referrals 6-months into the past.

To address sparsity of the feature matrix which has only
about 5.5% non-zero entries, we used PCA. which densifies
the feature-matrix. A side benefit is we are able to significantly
lower the feature-dimension without much loss in information.

Lastly, to address the extreme class imbalance under-sample
negative examples. For every positive example, we randomly
choose a corresponding negative example, producing a training
set with the same number of positive and negative examples.

B. Modeling

We deployed several standard ML methods to learn the
physician process P . These methods are available in Python’s
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TABLE I
DATA SUMMARY

Time period Months Patient Records Patients Referrals Data Matrix Sparsity
Train 01/2017–12/2018 24 6.85M 374,106 13,383 6.85M × 87 5.46% non-zero
Test 01/2019–12/2019 12 4.50M 426,954 9,765 4.50M × 87 5.56% non-zero

scikit-learn library [7]: (i) Logistic regression with l2 regu-
larization (ii) Naı̈ve Bayes classifier (iii) Gradient boosting
classifier (iv) Neural networks. To select hyper-parameters,
we used cross validation. Neural Networks struggled with the
sparse data and consistently underperformed in accuracy and
runtime. Hence, our results focus on the three other classifiers.

C. Evaluation

The trained models generate monthly predictions moving
forward, for each patient-month in the test set. We evaluated
the predictions using confusion matrices, precision, recall,
accuracy, F1 score, balanced accuracy score, and ROC-AUC
scores. To align with the priorities of managed healthcare, the
metric we focused on is top-k precision, that is the accuracy of
the ML’s positive predictions. The reason is that physician re-
ferrals cannot be undone, that is, false negatives are irrelevant.
The potential benefits come from identifying new candidates
for CCM. Specifically, do the model’s false positives have
quantifiable value? We perform in-depth analysis of the model
false positives to provide evidence that these false positives are
good candidates for CCM.

Figure 1 shows how we compute precision. For each patient-
month, the model scores patients and the top k are model
positives, for k = 500 (to match the available capacity at the
insurance company). All other patients in the month are model
negatives. We consider three possibilities: (i) A patient in the
top k has a referral in the next g months, a true positive (TP).
(ii) A patient in the top k does not get a referral in the next
g months, a false positive (FP) (iii) A patient is referred but
has no model positive in the prior g months, a false negative
(FN). The referral time horizon g is the evaluation window.

V. RESULTS

We now evaluate the machine learning workflow against
physician referrals, interpret the final predictor, and compare
the design choices available. Our evidence shows:

1) Predictive performance depends significantly on the ma-
chine learning model. Robust boosted models worked
best. The top performer was gradient-boosted trees.

2) Preprocessing (scaling, down-sampling, dimension reduc-
tion (PCA) and relabeling to enforce referral-stickiness)
can significantly impact on predictive performance. How-
ever, for gradient-boosted trees which are automatically
regularized, the impact was minimal on accuracy. How-
ever, pre-processing significantly improved the efficiency
of our top performing model without loss in accuracy.
This often happens with high-dimensional data.

3) The model positives are corroborated by the physician
referrals and in-depth analysis of the patient profiles. Our

model can augment the provider based referral system by
identifying additional candidates for CCM.
• Both physician and model refer the sickest patients.
• The model false positives appear to deteriorate in

health, an argument in favor of placing them in CCM.
• Model false positives have patient profiles that are

remarkably similar to physician referrals.

A. Machine Learning Model, Pre-processing and Relabeling

Tables II and III compare three representative machine
learning models: Naive Bayes, regularized logistic regression,
and our top performer, gradient-boosted trees. These models
are available in Python’s scikit-learn package [7].

We compare models with and without downsampling, top-5
PCA, and relabeling. For our top model, to benefit from the
drastic efficiency gains of PCA and downsampling, relabeling
is important and gives a 4% boost in precision. The relabeling
compensates for the slight information loss with PCA and
downsampling. The efficiency gain from downsampling (close
to 200×) is due to the extreme class imbalance. Note that
when relabeling, to enforce stickiness of referrals, we used a
6-month window to match the 6-month evaluation window.
We did different relabeling windows. There is a general
near-monotonic trend with more relabeling leading to better
performance. We focus on 6-month relabeling.

TABLE II
EFFECT OF PCA (12-MONTH TEST PRECISION).

Model PCA No PCA

No relabeling Relabeling No relabeling Relabeling

Gradient Boosting 0.371 0.411 0.401 0.419
Logistic Regression 0.164 0.159 0.288 0.298
Naı̈ve Bayes 0.103 0.104 0.111 0.119

TABLE III
EFFECT OF DOWNSAMPLING (12-MONTH TEST PRECISION).

Model Downsample No Downsample

No Relabeling Relabeling No Relabeling Relabeling

Gradient Boosting 0.371 0.411 0.410 0.418
Logistic Regression 0.164 0.159 0.166 0.157
Naı̈ve Bayes 0.103 0.104 0.099 0.097

B. Interpreting the Model: Feature Analysis

We analyze the important features for our top-performing
gradient-boosted predictor. Such feature analysis gives insight
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time

Forward Window

Patient enters model’s top-500
Physician referrals

M1

False Positive
M2

True Positive
P1 P2

False Negative

Fig. 1. Evaluation Metric. The patient enters the top-500 for model referral at M1 and M2. Physician referrals occur at P1 and P2. M1 is a false positive
because there is no physician referral in M1’s forward window. M2 is a true positive because there is a physician referral in M2’s forward window. The
physician referral P2 is not in the forward window of any prediction model prediction in the gray box, and hence is a false negative.

TABLE IV
TOP 10 IMPORTANT FEATURES FOR PREDICTION ON CCM DATASET

Rank Feature Name Category Type Importance

1 Total Cost Cost Dollar 0.532
2 Chronic Disease Count Dignosis Number 0.218
3 Age at Midmonth Demographic Float 0.049
4 Cost for Radiology Cost Dollar 0.042
5 Tobacco Use Diagnosis Boolean 0.036
6 Cost for Primary Care Cost Dollar 0.021
7 Cost for Outpatient Cost Dollar 0.021
8 Cost for Inpatient Cost Dollar 0.019
9 Depression Diagnosis Boolean 0.012
10 Bipolar Disorder Diagnosis Boolean 0.010

into the model, identifying the parts of a patients’ profile
most indicative of CCM-eligibility. The top-10 features are
in Table IV. The importance roughly captures how often the
feature is a determining factor in the final decision [7]. From
a healthcare perspective, the model has honed in on sensible
features. For example the top three features are the historical
total expenditures, a proxy for a patients’ health (higher cost
means more sick), number of chronic diseases and age.

C. Comparing Model Predictions to Physician Referrals

We now compare the details of the machine learning predic-
tions with the physician referrals. We analyze: True positives
(TP), the model’s top-500 riskiest that were also physician
referrals; False positives (FP), the model’s top-500 riskiest that
didn’t get a physician referral; False negatives (FN), physician
referals that didn’t make into model’s top-500 riskiest duing
the prior evaluation window. We already saw that the precision
of the model-positives is a staggering 41%. We now delve into
more details on the false positives and false negatives.

On average we find that around 30% of our FP individuals
were referred to CCM at some point in their medical trajectory
(either before or after the model captured them). So in a
sense, these are only mild false positives. We also examine
the FP and TP subgroups using three additional approaches:
patient similarity to physician referrals, referral reasons, and
cost/disease similarity to physician referrals. These experimen-
tal results corroborate that the FP and TP subgroups, which
our ML models predict every month, are highly similar to one
other with respect to their corresponding patient profiles. We

conclude that in each month, most patients belonging to the FP
subgroup would have been appropriate for referral to CCM.

Patient Similarity. In table V, we present statistics that yield
important insights on how much similarity there is on average
between the patients from TP and FP subgroups. We examine
the closest member in the TP group for each member of the FP
group. The closest patient is defined using Cosine Similarity
[8]. To quantify the significance of the similarity between FP
and TP, in each month, we sample a random cohort of 5,000
patients and compute the fraction of this random cohort whose
similarity to its closest TP is below the similarity of the FP
cohort. The results are in Table V. We find that on average,
there is more than 95% similarity between the FP and TP
cohort and the significance is on average larger than 85% of
random patients.

Referral Reasons. Tables VI and VII provide insights on the
distribution of the referral reasons among the people referred
by our model. Specifically table VI, showcases the distribution
of referral reasons among the TP and FN groups. Table VII
shows the distribution of the top 10 referral reasons by rate
in our dataset, and provides the FP and TP rates within
each group. This suggests that our model captures a large
portion of the most prominent referral reasons, obtaining good
precision on these referral codes. A notable exception, high
risk pregnancy, is not well modeled because prenatal costs
tend to be fixed costs that are uncorrelated with severity.

D. Cost and Chronic Disease Count Similarity

Lastly, we analyze the two important features cost and
disease count in the 12 months prior to and after referral. We
compare TP, FP, FN and the rest of the patients not referred by
our model or physicians. Figure 2 shows the results. In graphs
2(a-c), we find an astounding similarity between the FP and TP
groups suggesting that the group corresponding to FP might
include patients who should be in CCM. The group indicated
by the ”REST” included the bulk of the patients and maintains
a low cost and disease profile. The FN group, even though it
is higher in ranking than the ”REST” group, is substantially
lower than the TP and FP groups. Figure 2(c) shows that the
patients that are on poor chronic health trajectories are found
by both our model and the physicians.
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TABLE V
AVERAGE COSINE SIMILARITY BETWEEN FALSE POSITIVES AND CLOSEST TRUE POSITIVE. WE ALSO SHOW THE FRACTION OF RANDOM PATIENTS WITH
LOWER COSINE SIMILARITY THAN FALSE POSITIVES. OUR FALSE POSITIVES ARE MUCH MORE SIMILAR TO TRUE POSITIVES THAN RANDOM PATIENTS.

MYR 201901 201902 201903 201904 201905 201906 201907 201908 201909 201910 201911 201912

Avg. Cos Similarity 0.976 0.966 0.978 0.977 0.973 0.968 0.979 0.974 0.963 0.975 0.970 0.961

Avg. Cos Percentile 87.463 83.756 86.400 75.716 88.287 86.347 80.709 84.994 82.322 83.545 84.777 83.747
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Fig. 2. Cost and Chronic Disease Counts prior to and after model referral. Average patient profile for: (Left) the year prior to the referral month, the past.
(Right) the year after the referral month, the future. Prior profile of true and false positives are comparable. The future disease profile is more severe for true
positives: patients identified by both the model and physicians are the sickest. The false positives and false negatives have comparable disease profiles with
false positives having higher future cost. The false positives appear sicker than other other physician-referrals (false negatives), and might benefit from CCM.

VI. CONCLUSION AND FUTURE WORK

A key contribution of this work is to demonstrate the poten-
tial of an ML model trained with physician referrals to identify
similarly complex patients, offering the potential of scaling
the insights of doctors systematically across a population. We
developed a pipeline to effectively model CCM using sparse,
unbalanced, and inaccurately labeled data, and demonstrated it
in a case study. Our results showed that the gradient boosting
model has a high degree of precision (41%) across the subset
of the top 500 riskiest patients, an evaluation directly aligned
with the needs of the health plan provider’s use case. To

summarize our results, machine learning is able to identify
a large fraction of physician referrals. Indeed these patients
appear to be the sickest patients whose numbers of chronic
disease counts drastically increases in the year following
referral. The machine learning also identifies candidates for
CCM which are not picked up by the current CCM-referral
process. In a detailed analysis of these “false positives”, their
remarkable similarity to actual physician referrals suggests that
our machine learning predictor can identify new candidates
for complex care management and/or predict referrals before
a physician has an opportunity to do so.
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TABLE VI
REFERRAL REASON FOR TRUE POSITIVES AND FALSE POSITIVES (% OF

MODEL PREDICTIONS IN A REASON CODE). THE MODEL’S REASON-CODE
DISTRIBUTION IS SIMILAR TO THE PHYSICAN DISTRIBUTION IN TABLE VII

False Negatives Perc% True Positives Perc%

Other 31.44 Other 22.1
Behavioral Health 17.25 Behavioral Health 33.44
Coordination of Care 19.4 Coordination of Care 14.81
Substance Use 5.0 Substance Use 9.11
Mental Health Condition 4.67 Mental Health Condition 9.1
High Risk Pregnancy 7.04 Diabetes 2.02
Diabetes 3.99 Oncology 1.57
Oncology 1.63 Psychosocial Concerns 1.14
Psychosocial Concerns 1.73 COPD 0.91
COPD 1.2 Mul Co-Morb or Cplx Cond 1.08

TABLE VII
REASONS FOR PHYSICIAN REFERRALS (FRACTION OF PHYSICIAN

REFERRALS IN A REASON-CODE THAT WERE CAPTURED IN THE MODEL’S
TRUE POSITIVES). ACCURACY VARIES OVER REASON CODE.

Referral Reasons True Positives% False Negatives% Rate%

Other 17 83 29
Behavioral Health 37 63 21
Coordination of Care 19 81 18
Substance Use 35 65 6
Mental Health Condition 37 63 6
High Risk Pregnancy 3 97 6
Diabetes 13 87 4
Oncology 23 77 2
Psychosocial Concerns 17 83 2
COPD 18 82 1

Despite a greatly unbalanced dataset, we are able to
demonstrate effective ways of improving the modeling pro-
cess through both windowing and downsampling. Specifically,
windowing the data seems to marginally improve modeling
outcomes. Further, we show that downsampling can be used
to make the training process dramatically more efficient with
little impact on model performance.

The maini limitation of our research is that our goal was to
mimic physicians based on claims data alone so the system is
designed for usage by health payers not providers. Additional
patients not found by physicians could benefit from CCM
and electronic health records data could provide additional
useful features. Further, predicting based on physician-referral
patterns could propagate biases and disparities in existing
CCM referrals. A system which could incorporate additional
input from domain experts, e.g. clinicians, and also provide
explanations for its predictions could enhance user confidence
in the system and increase usage.

Another natural extension is further study to understand
the degree to which CCM may be effective in improving
patient outcomes. Randomized clinical trials represent the gold
standard in such evaluations. For example a recent randomized
controlled trial found a hot-spotting program had an insignifi-
cant effect in hospital readmissions [3]. This analysis could be
extended to an observational study of CCM effectiveness for
a variety of health and usage based outcomes. Since CCM-

based interventions may actually increase usage and costs in
the near term, the long-term effects of CCM on both patient
health-outcomes and costs require more study. Our proposed
CCM pipeline creates propensity-to-treat models which could
be used in propensity-based treatment effect analysis. We leave
these extensions and enhancements to future work.
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