Hybrid Matching Methods for Treatment Program Evaluation: A Case Study

Nafis Neehal, Georgios Mavroudeas, Malik Magdon-Ismail, Jason Kuruzovich, and Kristin P. Bennett

Rensselaer Polytechnic Institute, Troy, New York, USA.

╋

Overview

+

0

- Introduction
- Background
 - Causal Inference
 - Matching Algorithms
 - Survival Analysis
- Our Contribution
- Methodology
 - Data
 - Matching Methods
- Results and Discussions
- Conclusion

Introduction

- Type-2 Diabetes (T2D) one of the most prevalent chronic conditions
 - Affecting over 462 Million people worldwide
- Web-based Health Management Program (HMP)
 - Preventing the onset of T2D
 - Offered by several health payers (HP)
- HPs are highly interested in measuring the associated impact of HMPs on patient outcome
 - Golden standard is Randomized Control Trials (RCT) expensive and time consuming
 - Analysis of data from observational studies (EHR, Claims, Lab and Biometrics etc.) less costly and easily available
- We evaluated effectiveness of a particular HMP provided by a midsize regional HP based on two outcomes
 - T2D onset
 - Acute Care usage (In-patient visit or ER visit)

Challenges

- T2D has slow onset
 - Determining success of T2D prevention/diagnosis becomes challenging
- Use of observational data
 - Contains selection bias and influence of confounders
 - RCTs automatically handles them through randomization
- Covid-19 pandemic
 - Significant shifts in healthcare usage patterns

Background

+

0

Causal Inference

- Causal inference determines independent, actual effect of an Event A on an Event B
- Determine whether T affects Y
 - X affects both T and Y
 - Control for X, so that the measured effect on Y is only because of T, and not X
- Most popular method to control for the effect of confounders (X) is matching

Fig: Causal Inference [1]

Matching Algorithms

- Choose nearest neighbor for each treated sample from all the controls
 - Based on propensity score (PSM) [1]
 - Based on all the features (NNM)
- Matching balances the distributional differences between treated and control

Survival Analysis

We are interested in the time to event (T2D onset or Acute Care) usage from the index or registration date, which is called the survival time

- Kaplan-Meier Survival Plots
 - represents probability that an event has not occurred after the index date at a respective time interval
- Logrank tests
 - evaluates the hypothesis that there is no difference between the populations in terms of survival times
- Cox's Regression
 - quantifies the effect of several covariates on the survival time
- Restricted Mean Survival Time (RMST)
 - quantifies the postponement of the outcomes during a specified (restricted) interval

Contribution

- Proposed a novel hybrid matching procedure for balancing distributional differences
- Deployed a suite of matching methods for causal analysis
 - From most popular propensity score matching to deep learning based state-of-theart approaches – to ensures robustness
 - Used varying number of features (selected using several methods) to control for confounding
- Evaluated the HMP based on multiple outcomes
- Utilized survival analysis techniques to capture the evolving nature of T2D and account for the right censoring of data

Methodology

+

0

Data

- More than 9 million de-identified patient records from Nov 2017-April 2021
- Each patient data (77 features) is a time series of records
 - 69 Diagnosis/Summary codes, 3 cost related features, rest are demographic and insurance related information
- Patients were only chosen
 - if no diabetes diagnosis on index/registration date
 - has at least 6 months of history before their index/registration date

Matching Methods

Hybrid Matching Method

- Deployed as an additional prefiltering step for all nonpropensity score-based methods
- Combines K-nearest neighbors, exact matching and coarsened exact matching

* Results and Discussions

Kaplan-Meier Curves and Logrank Test

- Curves are from NNM Select
- 1(a) shows HMP patients have a higher and faster rate to get a T2D Diagnosis than controls
- 1(b) shows HMP and control patients are similar after removing patients who has T2D diagnosis in first 2 months
- 1(c) shows HMP patients have a lower rate of acute care utilization than controls

RMST Analysis and Cox's Regression Coefficient

- RMST difference values measured every 6-month up to 18 months
- Negative value indicates that the treated has an event sooner than controls
- NNM Select and PSM Select benefits from domain knowledge, produces similar trends, and is the best estimate
- Latent Space methods produce results similar to the best estimate
- Values monotonically increase across months showing patient (HMP vs Control) trajectory diverges
- Treatment coefficient -0.271 in Cox's Regression indicates reduced acute care usage of HMP patients

	Dia	betes Diag	nosis	Acute Care			
	6 Months	12 Months	18 Months	6 Months	12 Months	18 Months	
NNM Select	-0.147	-0.315	-0.497	0.069	0.241	0.441	
PSM Select	-0.148	-0.319	-0.506	0.060	0.222	0.428	
NNM All	-0.140	-0.297	-0.469	0.028	0.135	0.257	
PSM All	-0.144	-0.312	-0.496	0.094	0.396	0.791	
PCA Latent	-0.141	-0.291	-0.469	0.054	0.191	0.356	
MHTM Latent	-0.148	-0.325	-0.518	0.048	0.176	0.379	
AE Latent	-0.148	-0.331	-0.536	0.047	0.158	0.301	

Matching Quality Comparison

	Treated	Matched Controls						All Controls	
Features		NNM Select	PSM Select	NNM All	PSM All	PCA Latent	MHTM Latent	AE Latent	
Age	50.74	50.82	49.71*	50.80	50.81	50.77	50.78	50.79	52.64*
Total Cost	712.1	641.0	634.8	589.3*	708.0	765.6	749.3	827.0	899.38
Gender	0.21	0.21	0.22	0.21	0.27*	0.21	0.21	0.21	0.43*
Tobacco	0.06	0.05	0.06	0.07	0.10*	0.09*	0.10*	0.09*	0.11*
Pressure	0.00	0.00	0.01	0.00	0.01*	0.00	0.00	0.00	0.02*
Obesity	0.50	0.49	0.50	0.50	0.32*	0.30*	0.29*	0.29*	0.30*
Hypertension	0.34	0.33	0.32	0.35	0.32	0.25^{*}	0.25^{*}	0.25^{*}	0.38*
Hypothyroid	0.10	0.08	0.08*	0.09	0.09	0.09	0.09	0.08*	0.09
Disease Count	2.91	2.87	2.66*	2.73*	2.82	2.42*	2.40*	2.38*	3.36*
Acute Care (Prior 2 Mon.)	0.04	0.03	0.02*	0.03	0.03	0.03	0.03	0.03	0.06*
Acute Care (Prior 6 Mon.)	0.12	0.11	0.08*	0.11	0.11	0.11	0.11	0.11	0.17*
Inpatient (Prior 6 Mon.)	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.06*
ER Visits (Prior 6 Mon.)	0.09	0.09	0.06*	0.09	0.08	0.09	0.09	0.09	0.12*
Business Line	0.96	0.96	0.90*	0.96	0.82*	0.96	0.96	0.96	0.82*

Table 2: Comparison of Treated and Control Means (*p<0.05) for All Methods.

Conclusion

+

- Illustrated the practical challenges of evaluating the effectiveness of HMPs using observational studies based on EHRs
- Got robust and consistent conclusions about the observed outcomes by comparing results from 7 different matching methods
- HMP increased T2D diagnosis in the first two months, but no significant differences after that
- HMP patients were less likely to utilize acute care