Cloud-POA: A Cloud-Based Map Only Implementation of PO-MSA on Amazon Multi-node EC2 Hadoop Cluster

Paper Id- 284, ICCIT-2017, Dhaka, Bangladesh

Nafis Neehal, Dewan Ziaul Karim, Ashraful Islam

Lecturer, Department of CSE, Daffodil International University, Dhaka, Bangladesh.

Outline

- Overview
- Problem Statement
- Literature Review
- Proposed Methodology and Implementation Details
- Performance Evaluation
- Future Scope and Conclusion

Overview

- MSA Algorithm implemented Partial Order based Multiple Sequence Alignment (PO-MSA)^[1]
- Platform Implemented on Amazon EC2 Multi-node Hadoop Cluster (10 nodes)
- Framework Mapreduce (Map only job)
- Contribution- Better performance (runtime), Scalable and Distributed, Generate consensus sequence^[2]

Problem Statement

- Sequence Alignment
 - -Seq1 = AAGGT, Seq2 = AGG

-Match = +2, Mismatch = -1, Gap = -2

Problem Statement (Cont.)

Pairwise Alignment	Progressive MSA	Iterative MSA	
 No evolutionary relationship No phylogenetic tree Dynamic Approach increases time complexity 	 No error correction Information loss (up to 28%)^[3] 	 Iteration limited to a few number of times Increases time complexity but also increases accuracy up to 5-10%^[3] 	
TARGET - Ontimize any MSA Algorithm to gain the			
ontimal performance (Reduced Runtime + Increased			

Accuracy)

Literature Review

Typical MSA in terms of Quality	Typical MSA in terms of Performance
 MSA can reduce to consensus (1D Profile), but not vice-versa 	 Most Popular MSAs are ClustalW, Dialign-TX, MAFFT, MUSCLE, POA, Probalign, Probcons, T-Coffee^[4]
- Information Loss Happens	
 Degeneracy in MSA to Consensus mapping 	 Probcons, T-Coffee, Probalign, MAFFT were more accurate, but consumed huge amount of time and memory
 Degeneracy in representation of G/I format in RC-MCA 	 ClustalW, Dialign and MUSCLE were faster and less memory consuming, but less accurate

Why Choose PO-MSA?

PO-MSA in terms of Quality	PO-MSA in terms of Performance
 Creates a unique MSA- Consensus mapping so that MSA can be reconstructed from Consensus Eliminates degeneracy of MSA 	 POA runtime is moderate, accuracy is excellent Runtime can be decreased radically by a parallel implementation
	 Has a scalable structure in order to deploy for aligning large number sequences

PO-MSA Structure

- Align new sequence to a DAG
- Multiple successors/ predecessors
- Align using all previous scores
- Insert node if not aligned with anything
- Insert aligned sequence and process new sequence again

Hadoop's Mapreduce

Proposed Framework

Framework Configuration

- Python based POA Implementation
- Amazon EC2 based Multi Node Hadoop Cluster
- (10 Nodes 2M, 8S)
- EC2 Master Instance Configuration t2.micro type, Linux (Ubuntu 16.04) Image, 4GB Ram, 16 GB SSD
- EC2 Slave Instance Configuration t2.micro type, Linux (Ubuntu 16.04) Image, 2GB Ram, 4 GB SSD
- Hadoop Streaming for Python Wrapper
- Hadoop's Mapreduce Framework (Map Only Job)
- PuTTY for SSH Tunnelling and WinSCP for File Transfer

Input Preprocessing

- Generally contains sequences 150-200 BPs long (short-read sequences)
- Tested with up to 100k sequences
- All sequences were DNA sequences
- Both Synthetic Data and Benchmark Data has been used
- For Benchmarking, GENIE Gene Finding Benchmark Dataset was used (793 Long Human Genes)

>seq3 CGTTATGCCGATCAGGGCGCCTCGCCGAAGCCCCTTACTCCTGTCG >seq4 ATGTATCTAGTATATAGAGCTATCTACCGCGGTCGCGGACTACGAG/ >seq5 GCCAATCATGGTGAGTTCGATTCGTTCTTAACTAACACGTGGTGAC >seq6 CCGGTGAGGTCCTCCTGCTCAGTTTGGGTACACCCAAAAGCGCATC >seq7 CATCCTGAAGCTCGATAGCCTAGATATCTCGCAATTCAAATCACAT >seq8 TTTTGAATAAGAGAAAAGTCCATTTTGACACTCGCCGGATTCCGCA >sea9 ATAAAACGCCACTCCAATGCTAATATTGACTGGCCGTCCGGTCACA^{*} >seq10 AGCCCCATGGAAGGGATTCCCGTTTTGAGACTTTTTCGCTTCCAAC >seq11 TGACAGTTCTTATTGAGTGGAGATTCCACTCGGCCTATTTTGCGC >seq12 CCAAGGACGCAGGACTATAACGTCAGGGCGAAAGTTAGAGCTTTAA >seq13 GCAACCATGGGGTAGAATGGCCATTATGCTGCGCTTGCGCGTGGGT

Py-POA Implementation

Algorithm 1 Mapper in Cloud POA

- 1: $seqno \leftarrow 0$
- 2: $fasta \leftarrow ReadFasta(args.infile)$
- 3: $graphBase \leftarrow poaGraph()$
- 4: for (label, sequence) in fasta do
- 5: $alignment \leftarrow seqGraphAlignment()$
- 6: graphBase.incorporateSeqAlignment()

7: end for

- 8: alignments = graphBase.generateAllAlignments()
- 9: END =0

•Simplefasta - Preprocessing FASTA

•Poagraph - Generate POA Graph

•Seqgraphalignment - Align and Insert new sequence to the Graph

Final Result

seq87	GGTI-TGGT-CTGATCGAATCAAG-ACT-G-ATT-TGGT-CTGATCGAA-G
seq88	TT-CT-CGT-CGGGAATATTA-G-CTCATT-CT-CGT-CG-CG-AT-G-GC-GTC-A-GTCC
seq89	TCGCAA
seq90	CT-A-TGCG-T-T-AC-GT
seq91	CGCGGGAAAGCATCA
seq92	G-GCT-AG-TAACAAAG-AC-GCT-CG-GCT-CA-GGAG-GCT-AG-TAACAAAG-AC-GCT-CGGC
seq93	CAAATA-AG-GTC-TAGG
seq94	G-AG-CTG-AG-CTG-AG-CTCC
seq95	GGAG-GT-CC-CT-TAAAAA-G
seq96	GGAAT-GA-CAATT-AG-GC
seq97	C-AT-CGCTTC-AG-GCGC-TCG
seq98	CTGCCTGCCGCGCG
seq99	CCCCCCC
seq100	ATTCG-CATA-CAAG-AGC
Consensus0	CATTGGAT-TAGCGA-ACCACCAA-
Consensus1	AT-AGGTTATC-CG-GTC-TT-GTCTTAT-AGGTT-TAGCGATC-T-G-GC
Consensus2	C-AT-AACTTATCG-CATT-TAG-GG
Consensus3	GAGACCCT-CG-GTC-TT-GTCTAC-CT-A-AGGT-C-AGGAGCGAGCCAAC-TCA

Performance Evaluation

Performance Evaluation

■ Cloud-POA ■ Standalone-POA ■ T-Coffee ■ MUSCLE ■ KALIGN ■ MAFFT ■ ClustalW

Performance on GENIE Benchmarking Dataset

Future Work

- Build guide tree for establishing sequencing order
- Aligning two PO-MSA Graph with each other
- Make some optimization to further improve the alignment quality

References

- 1. Lee et. al (2002), Multiple Sequence Alignment using Partial Order Graphs. Bioinformatics, Vol 18, Issue 3.
- 2. Lee et. al (2003), Generating Consensus Sequence from Partial Order Multiple Sequence Alignment Graphs. Bioinformatics, Vol 12, Issue 4.
- 3. Driscoll et. al (2013), An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics. ISRN Biomathematics.
- 4. Pais et. al (2014), Assessing the Efficiency of Multiple Sequence Alignment programs. AMB.

Affiliation and Acknowledgement

Bangladesh University of Engineering and Technology

THANK YOU

