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Abstract. We study a type-2 diabetes (T2D) health management pro-
gram (HMP) using causal methods for treatment effect estimation on
electronic health records. We use matching and survival analyses to assess
T2D onset and acute care usage (emergency room or inpatient visits).
To account for bias and healthcare usage changes due to the COVID-19
pandemic, we developed a hybrid matching approach that first identifies
the set of potential controls based on time and other critical features
and then applies matching methods. We compare results across seven
state-of-the-art methods including expert-informed approaches. We find
that HMP potentially improved subject health by more rapidly identi-
fying patients with undiagnosed T2D at enrollment, allowing for timely
treatment. After the initial two months, no significant differences are
observed in time to T2D onset. We also found that HMP patients were
less likely to seek acute care indicating improved health outcomes. We
highlight practical challenges in observational health studies.

Keywords: Clinical Health Informatics, Causal Inference, Survival Anal-
ysis

1 Introduction

We use observational data to examine the effectiveness of a web-based lifestyle
self-management program that has the primary goal of preventing the onset of
type-2 diabetes (T2D) and improving the well-being of its clients which is being
used by a midsize health payer (HP) to improve health outcomes for its mem-
bers. This health management program (HMP) encourages individuals to make
gradual changes and attempts to reinforce positive behavioral patterns through
a 16-week program. Mobile/web applications are important to healthcare man-
agement because they offer the potential of scaling healthcare services that help
individuals to implement behavioral changes, which in turn can improve health
and reduce the cost of healthcare management. Most HPs who implemented such
systems also want to measure the associated impact on patient outcomes. So it
is important to develop methodologies to assess outcomes using possibly-biased
observational data, since randomized controlled trials may not be practical.

⋆⋆ This work was supported by Capital District Physician’s Health Plan.
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Type-2 diabetes is one of the most prevalent chronic conditions, affecting over
462 million people worldwide1; and behavioral changes can have an important
positive impact on it. A recent randomized field experiment has found that web
and mobile applications for diabetes management can be effective in helping to
improve patient health metrics (blood glucose and glycated hemoglobin levels)
as well as reducing medical expenses and hospital visits2. Our goal is to help
understand the degree to which this HMP can improve the health outcomes of
those not yet diagnosed with T2D using historical observational data.

When evaluating the effectiveness of HMP in this study, we dealt with three
major challenges: (i) T2D is a chronic disease with slow onset, so defining when
T2D prevention succeeds or fails is challenging especially over the relatively short
duration of this study, (ii) this is an observational study and not a randomized
clinical trial, so matching methods must be used to assess any treatment effects to
control for treatment selection biases, and (iii) the COVID-19 pandemic caused
healthcare usage patterns to change significantly during the course of the study.

Section 3 describes how we construct the observational study to overcome
these challenges: (i) To assess the treatment effects, we deploy a suite of match-
ing methods for causal analysis ranging from propensity methods to more recent
deep learning approaches which are both widely used and state-of-the-art. This
ensures that our findings are robust. For our work, we adopt matching-based
methods because of their popularity, effectiveness in reducing bias by balanc-
ing the feature distributions of treatment and control groups in observational
studies, and finally, for its easiness in interpretability.3 (ii) To control for con-
founding, we worked with experts to define variables related to the outcome.
These selected variables are used to both create and assess match quality. Se-
lect methods match using only the expert-curated variables. The other methods
use all of the available variables, either in the original (All) or Latent space.
(iii) To handle the evolution of healthcare, we developed a hybrid matching
approach. For each subject in the treatment group, we define the month of first
registration as the index date. For each treatment subject, the set of possible
control subjects is defined by precisely matching the index date and some of
the select variables, and then propensity scoring or other matching methods are
used on the remaining variables. (iv) The first outcome we analyze is the onset
of Type-2 Diabetes(T2D). We restricted the analysis to patients with no prior
diagnosis of diabetes at the index date and examined if the subjects were subse-
quently diagnosed with T2D after the index date. (v) To assess how the program
affects health care usage, we choose the second outcome to be Acute Care(AC),
which is defined as the length of time after the index date until a subject has
an emergency visit or an inpatient visit. (vi) To capture the evolving nature of
T2D and account for the right censoring of the data, we utilize survival analysis
to examine HMP effectiveness.

The results in Section 4 are surprising; use of HMP increases the probability
of a subject being diagnosed with T2D in the first two months after treatment.
Undiagnosed T2D is harmful, while early identification and treatment of T2D
have several health benefits. We also discover that the program does positively
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influence the patients’ well-being by reducing their emergency and inpatient visit
rates. The pandemic may have exacerbated the effect as HMP patients may have
been more likely to seek treatment through their primary care doctor. In Section
5 we conclude with some thoughts on the challenges in observational studies.

2 Background

Problem Formulation: For causal analysis we operate under the potential out-
come framework. We utilize all the standard assumptions of causal inference4.
Let (Xi, T i, Y i) ∼ P be our dataset where Xi ∈ Rd denotes i-th patient’s d-
dimensional baseline covariates, T i ∈ {0, 1} is the binary treatment variable and
Y i is the observed outcome of interest for this patient. For a treated patient the
outcome is denoted by Y i(1), while a patient from the control group has the
observed outcome Y i(0). In general, for evaluating efficacy of an intervention
we are interested in the average treatment effect value (ATE). For randomized
clinical trials, one can calculate ATE for the whole study population5. For ob-
servational data, this estimate may be biased since treatment subjects are not
chosen at random. Thus we adopt state-of-the-art methods that match treated
subjects with appropriate controls to produce unbiased ATE estimates.

2.1 Matching Algorithms

Let Pt = {(Xi, T i, Y i)|T i = 1} be the treated group and Pc = {(Xi, T i, Y i)|T i =
0} the controls. Let M be a set of matching functions we experiment with which
takes the treated and control population as input and returns the matched con-
trol population. So, Xmc = ∀f∈M , f(Xt, Xc) as we denote the matched control
population as Xmc. For matching we deploy two popular matching functions3 -

1. Nearest Neighbor Matching (NNM): For each treated sample Xi
t , we extract

the top-5 nearest neighbors from Xc (top-5 defined as five samples with the
lowest distance, where distance is d = ||Xi

t − Xj
c ||2 for any one of the top

five neighbors denoted as Xj
c ∈ Xc ).

2. Propensity Score Matching (PSM): Propensity Score is the probability of
a patient being assigned to receive a particular treatment given a set of
observed covariates. For any patient sample (Xi, T i, Y i), the propensity score
for that patient will be e(Xi) = Pr(T i = 1|Xi). For each treated patient
Xi

t , we find the closest patient from the controls Xi
c (closest defined as

the control patient having the most similar propensity score to the treated
sample)

We construct the matched controls (see 3.2) in multiple ways: (i) applying
hybrid NNM or PSM on all original or a few selected features, and (ii) applying
ML methods to generate a low-dimensional representation of the original features
and then apply hybrid NNM on them. For ML methods, we use standard PCA6,
standard Autoencoder7 and MHTM - a more sophisticated Autoencoder-like
Deep Neural Network. We then compare them against the treated population
and evaluate program efficacy using survival analysis.
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2.2 Survival Analysis

We are interested in the time to T2D onset or Acute Care usage from the index
or registration date, which is called the survival time. The survival function is a
function that gives the probability that a patient will survive past a certain time,
and this probability can be used as a proxy for survival time itself. We utilize:
(i) Kaplan-Meier (KM) survival plots, (ii) Logrank tests, (iii) Cox (proportional
hazards) regression, and (iv) Restricted Mean Survival Time (RMST) for our
survival analysis8,9. These methods take into account that the data may be
right-censored, e.g. if the study ended or the subjects left the insurance group.

We use Kaplan-Meier Curves to generate survival curves that represent the
probability that the event (T2D or Acute Care) has not occurred after the index
date at a respective time interval. The Logrank test evaluates the hypothesis
that there is no difference between the populations in the survival times. We
also utilize Cox’s proportional hazards model to investigate the effect of sev-
eral covariates on the survival time. Finally, we use RMST differences, as an
alternative to Cox’s Regression model for quantifying the postponement of the
outcomes during a specified (restricted) interval as it corresponds to the differ-
ence between the areas under the two survival curves for the treated and control
groups.

3 Methodology

3.1 Data

The proprietary observational data for this study was provided by a regional
health payer organization. The data contain more than 9 million de-identified
records of subjects eligible to participate in HMP, spanning from November 2017
to April 2021. For the 1,604 unique patients enrolled in HMP (treated group),
we know the date of registration and their completion dates. We had records of
about 350K unique patients per month to use as the unmatched control group.
The records track the patient history through a number of variables which are
updated monthly. Thus each patient in the data is represented with a time series
of records with covariates describing their health profile. These covariates can
be divided into three main parts. The first part contains 69 diagnosis/summary
codes, the second part contains 3 cost-related features describing patient ex-
penditures and the last part contains demographic and insurance information
such as age, gender, and insurance type. We apply log transformations to the
age and cost-associated features. To deal with potential confounding as best as
possible, we use domain knowledge to identify features that are likely associ-
ated with the outcome. We narrow down the final feature list to the following:
features (i) age (ii) total cost (iii) gender (iv) tobacco use (v) has pressure
(vi) has obesity (vii) has hypertension (viii) has hypothyroid (ix) total disease
count (x) acute care usage in the previous 2(ACUTE2) and 6(ACUTE6) months
(xi) inpatient visits previous 6 months(ER6) (xii) emergency visits previous 6
months (IP6) (xiii) line of business (Medicaid, non-Medicaid), and denote them
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as expert features. We include ER6 and IP6 since it is important to make sure
that the matched patients have similar ER6 and IP6 history since the future
survival of these features (combined as Acute Care) is studied as an outcome.
We restrict the study to patients with at least 6 months of history before their
registered/index date(treated/controls), since some features utilize historical in-
formation. Also, the study is restricted to patients that did not have a diabetes
diagnosis at the registration/index date.

3.2 Matching Process

In an observational study, one cannot naively compare the outcomes between
treated (T = 1) and control (T = 0) subjects since there are induced biases
coming from the disparities in the distributions of the two groups. We develop
and deploy a hybrid matching scheme and we explore several matching algo-
rithms as a part of this hybrid matching process to produce controls similar to
the treated population. The methods are from two broad categories –
(i) Propensity Score Matching (PSM) based methods: PSM Select, PSM
All (ii) Nearest Neighbor Matching (NNM) based methods: NNM Se-
lect, NNM All, Principal Component Analysis ( PCA Latent), Autoencoder (AE
Latent) and Member Health Trajectory Model (MHTM Latent). In PSM Select
and NNM Select, we run the PSM and NNM algorithm on only the expert fea-
tures, while in PSM All and NNM All, we run the PSM and NNM algorithm
on all the features. In PSM Latent, AE Latent, and MHTM Latent, all of the
features are used to create a latent space, and NNM is done in latent space. In
all cases, the time frame of treated and controls was matched as a pre-filtering
step. As subjects enroll in HMP at different times, so it is very important to
match on the enrollment date to control for changes in healthcare and different
follow-up times.
NNM Hybrid Matching Process: For all five NNM based methods, we ap-
ply this additional pre-filtering step along with the NNM algorithm. Hence, we
denote this matching scheme as hybrid matching. It combines K nearest neigh-
bors (KNN), with exact and coarsened exact matching10. For all methods, we
always match the month as part of the multi-stage pre-filtering step. We denote
a treated subject i with registration date at time ti as X

i
t and a control subject

j at time tj as Xj
c . Simultaneously, we define the corresponding data including

all the subjects in the two groups as Xt, Xc for the treated and controls respec-
tively. After the matching is done we acquire the matched control group Xmc.
Algorithm 1 describes the hybrid matching process in detail.

After filtering the controls in this manner, we further define three types of
features Xex, Xint, Xnn ∈ X depending on how we apply the matching algorithm
on them, where X is all baseline covariates. For Xex features we match exactly
on the values between the treated and control subjects. For Xint we try to match
around an interval of the treated subjects’ values; for each feature Xi

int ∈ Xint

we define a list with the allowed intervals to match, H = {hi ∀Xi
int ∈ Xint}.

Finally, we match based on the Euclidean distance between the treated and the
control subjects using only the Xnn features.
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Algorithm 1: Hybrid NNM Matching of treated and control subjects.

Input: : Xt, Xc,K,Xex, Xint, Xnn, H
Output: Matched controls Xmc

Xmc = {};
for patient i in Xt with registration time ti do

Xc1: filter Xc to extract controls only with time ti;

Xc2: ∀Xi
c ∈ Xc1, filter Xc1 s.t Xi

t(Xex) = Xi
c(Xex);

Xc3: ∀Xi
c ∈ Xc2, ∀Xintj ∈ Xint, filter Xc2 s.t

Xi
t(Xintj ) ∈ [Xi

c(Xintj )± hj ] ;

Xi
mc: find the K nearest neighbors of Xi

t from Xc3 based on the Euclidean
distance of Xnn features;

Xmc = {Xmc;X
i
mc};

end

Latent Space Methods: Using machine learning methods for matching on a
latent subspace to generate the matched controls has become increasingly pop-
ular11,12. Thus, we also use one linear and two nonlinear latent space matching
methods (n=16 components): PCA Latent, Autoencoder (AE Latent), and Mem-
ber Health Trajectory Model (MHTM Latent). AE Latent and MHTM Latent
both models have almost identical architecture – an Input Layer, 5 consecutive
hidden blocks (each block contains a Dense Layer with ReLU activation, followed
by a dropout Layer with p=0.5 dropout probability) of 64, 32, 16, 32 and 64
dimensions respectively; with the 16-dimensional layer being the representation
layer. Both input and output layers have the same number of nodes. For all
three methods, the latent features represent a summary of all the input features
over the last year. We take the means of the monthly records as the aggregated
patient representation used for training. The AE Latent model attempts to re-
construct input values in output while the MHTM Latent model outputs next
year’s aggregated patient profile. We apply this step to deal with the seasonality
in data and hope to appropriately capture the significant underlying relationship
amongst the original features in the representation layer of these models. These
latent models were created for another project, and we include them to provide
a robust set of results. We leave a more intensive investigation and comparison
of input representation and latent space methods as future work.

4 Results and Discussion

Survival curves for the NNM Select for multiple outcomes and logrank p-values
for all methods are shown in Fig. 1. These p-values define how similar the treated
and the control populations are in terms of survival probabilities. In Table 1, we
present the RMST difference values measured after each 6 month period from
the treatment enrollment for up to 18 months. A negative RMST difference value
indicates the treated population tends to experience the outcome sooner than
the controls and a positive RMST difference value indicates the exact opposite.
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(a) T2D from idx date (p<0.05)
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(b) T2D from idx date+2 months (p=0.96)
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(c) Acute Care from idx date (p<0.05)

Method T2D T2D+2 Acute

NNM Select ** 0.96 **

PSM Select ** 0.71 **

NNM All ** 0.65 0.10

PSM All ** 0.78 **

PCA Latent ** 0.94 **

MHTM Latent ** 0.39 **

AE Latent ** 0.37 0.05

(d) Logrank p-values. ** means p < 0.05

Fig. 1: (a-c) PSM Select Kaplan-Meier Curves showing PSM Select treated (red)
and control (black) survival cuves and (d) Logrank p-values for all methods.

Type-2 Diabetes Diagnosis: The Kaplan-Meier survival curves for NNM Se-
lect shown in Fig. 1(a) demonstrate that the HMP patients (red curve) are
diagnosed with T2D faster and at a higher rate than controls (black) with p-
value < 0.05 by the logrank test. The logrank p-values show that this finding is
consistent for all the methods. We see that the drop primarily occurs in the first
few months. Hence, we also examine the T2D survival probabilities after remov-
ing all patients having T2D within the first 2 months after the index date (see
Fig 1(b) and p-values in Fig 1(d).) We observe, that after the first two months,
there is no significant difference between the time to the first T2D diagnosis.

Recall that T2D is a chronic disease that develops over time and that all
patients analyzed were not formally diagnosed with T2D at the index date. We
hypothesize that HMP helped patients with undiagnosed T2D seek evaluations
by primary care providers that led to a T2D diagnosis. Also, patients may have
chosen to participate or be recommended to the program because they were at
high risk for T2D. Timely diagnosis and treatment of T2D can improve patient
outcomes. HMP’s effect on earlier diagnosis may have been especially valuable
during COVID-19 when many patients were not seeking routine care. A ran-
domized study or further investigation of patients with fast onset T2D diagnoses
would be needed to fully understand this effect.
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Table 1: RMST Analysis for T2D and Acute Care after Index Date

Diabetes Diagnosis Acute Care

6 Months 12 Months 18 Months 6 Months 12 Months 18 Months

NNM Select -0.147 -0.315 -0.497 0.069 0.241 0.441
PSM Select -0.148 -0.319 -0.506 0.060 0.222 0.428
NNM All -0.140 -0.297 -0.469 0.028 0.135 0.257
PSM All -0.144 -0.312 -0.496 0.094 0.396 0.791
PCA Latent -0.141 -0.291 -0.469 0.054 0.191 0.356
MHTM Latent -0.148 -0.325 -0.518 0.048 0.176 0.379
AE Latent -0.148 -0.331 -0.536 0.047 0.158 0.301

Acute Care: After the surprising results on the onset of T2D, might HPM
contribute to patient health in other ways too? One possibility is to exam-
ine healthcare expenditures, but the pandemic changed healthcare usage. We
thought acute care conditioned on time would be a more consistent measure
of health outcomes. In Fig. 1(c), we present Kaplan-Meier survival curves for
time to obtaining acute care after index date for NNM Select, and Fig. 1(d)
presents all the logrank p-values for all the methods. The RMST values for all
methods are presented in Table 1. Note that the curves for treated and control
are almost identical for the first two months so we did not do any special time
analyses. We observe that for all methods, the treated population has a much
lower probability of obtaining acute care than the controls, and the effect is
significant except for AE Latent and NNM All. We also perform a Cox’s pro-
portional hazard treatment analysis based on NNM Select matching controlling
for all the expert features and the treatment. We get a treatment coefficient of
-0.271 (p-value <0.05) indicating that HMP patients seek less acute care.

Comparison of Matching Methods: Fig. 1 and Table 1 show that all methods
produce the same conclusions that HMP patients are diagnosed with T2D faster
and are less likely to use acute care with the minor exception that the logrank
p-values for AE Latent and NNM All are slightly above 0.05. We note, however,
that the RMST analysis in Table 1 indicates that the magnitude of the effect
produced by the 7 methods varies. NNM Select and PSM Select benefit from
domain knowledge, thus are our best estimate of the treatment effects. They
produce almost identical results. NNM and PSM using all the features produce
very different results at 12 and 18 months indicating that they match on different
controls. The latent space methods use hybrid NNM in the latent space. They
achieve results much closer to NNM Select and PSM Select than NNM All and
PSM All. Although they were not trained specifically for this problem, they
are trained using the average features averaged over the prior 12 months for all
patient data with at least 10 months of data in the last year. Yet they produce
similar results without the use of domain knowledge except for within hybrid
matching. We also examine the quality of the matches. For the selected features,
Table 2 compares the means (with p-value) of the treated and matched controls
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Table 2: Comparison of Treated and Control Means (*p<0.05) for All Methods.

Treated Matched Controls All Controls

Features
NNM
Select

PSM
Select

NNM
All

PSM
All

PCA
Latent

MHTM
Latent

AE
Latent

Age 50.74 50.82 49.71* 50.80 50.81 50.77 50.78 50.79 52.64*

Total Cost 712.1 641.0 634.8 589.3* 708.0 765.6 749.3 827.0 899.38

Gender 0.21 0.21 0.22 0.21 0.27* 0.21 0.21 0.21 0.43*

Tobacco 0.06 0.05 0.06 0.07 0.10* 0.09* 0.10* 0.09* 0.11*

Pressure 0.00 0.00 0.01 0.00 0.01* 0.00 0.00 0.00 0.02*

Obesity 0.50 0.49 0.50 0.50 0.32* 0.30* 0.29* 0.29* 0.30*

Hypertension 0.34 0.33 0.32 0.35 0.32 0.25* 0.25* 0.25* 0.38*

Hypothyroid 0.10 0.08 0.08* 0.09 0.09 0.09 0.09 0.08* 0.09

Disease Count 2.91 2.87 2.66* 2.73* 2.82 2.42* 2.40* 2.38* 3.36*

Acute Care
(Prior 2 Mon.)

0.04 0.03 0.02* 0.03 0.03 0.03 0.03 0.03 0.06*

Acute Care
(Prior 6 Mon.)

0.12 0.11 0.08* 0.11 0.11 0.11 0.11 0.11 0.17*

Inpatient
(Prior 6 Mon.)

0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.06*

ER Visits
(Prior 6 Mon.)

0.09 0.09 0.06* 0.09 0.08 0.09 0.09 0.09 0.12*

Business Line 0.96 0.96 0.90* 0.96 0.82* 0.96 0.96 0.96 0.82*

for each method. The means for all eligible controls are significantly different
for 12 of the 14 variables. There are no statistical differences in the means for
NNM Select and the treated population. All methods except PSM Select match
all of the variables related to prior acute care. NNM All finds patients that are
significantly healthier as indicated by lower Total Costs and Disease Counts.
PSM All has different distributions for several categorical variables.

5 Conclusions

This case study illustrates the practical challenges of evaluating the effective-
ness of HMPs using observation studies based on electronic health records. Our
strategy is to examine multiple outcomes using a suite of 7 different matching
methods including classical ones and deep learning-based advanced ones. We
start with 77 features and then use expert advice to create an expert-curated
set of features known to be relevant to the outcome. We match by month for
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all methods to control for the changing health care conditions and seasonality.
For NNM, we match precisely on features important for the problem and ap-
plied the nearest neighbor matching to the rest. The results are very consistent
across all the methods. We find that HMP increased the likelihood of a new
T2D diagnosis in the first two months but found no significant difference after
that, and patients in the HMP were less likely to need inpatient or emergency
care for a greater time. Evaluating the match quality, we find that the meth-
ods matching on selected features performed the best. The latent space results
shown here are promising but many modeling improvements are possible. One
limitation of this work is that our models do not consider how much of HMP
the subjects completed. In the future, semantically-aware tools based on latent
space models trained on large EMR datasets could be used to more effectively
and efficiently evaluate many different treatments for both program-specific and
general outcomes leading to better and cost-effective health care.
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