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Abstract

We introduce CTBench, a benchmark to assess language models (LMs) in aiding1

clinical study design. Given metadata specific to a study, CTBench examines2

how well AI models can determine the baseline features of the clinical trial (CT)3

which include demographic and relevant features collected at the start of the trial4

from all participants. The baseline features, typically presented in CT publications5

(often as Table 1), are crucial for characterizing study cohorts and validating6

results. Baseline features, including confounders and covariates, are also required7

for accurate treatment effect estimation in studies involving observational data.8

CTBench consists of two datasets: "CT-Repo", containing baseline features from9

1, 690 clinical trials sourced from clinicaltrials.gov, and "CT-Pub", a subset10

of 100 trials with more comprehensive baseline features gathered from relevant11

publications. We develop two LM-based evaluation methods for evaluating the12

actual baseline feature lists against LM-generated responses. “ListMatch-LM”13

and “ListMatch-BERT” use GPT-4o and BERT scores (at various thresholds),14

respectively, to perform the evaluation. To establish baseline results, we apply15
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advanced prompt engineering techniques using LLaMa3-70B-Instruct and GPT-4o16

in zero-shot and three-shot learning settings to generate potential baseline features.17

We validate the performance of GPT-4o as an evaluator through human-in-the-loop18

evaluations on the CT-Pub dataset, where clinical experts confirm matches between19

actual and LM-generated features. Our results highlight a promising direction with20

significant potential for improvement, positioning CTBench as a useful tool for21

advancing research on AI in CT design and potentially enhancing the efficacy and22

robustness of CTs.23

1 Introduction24

Medical research can be broadly categorized into clinical trials (CTs) and observational studies, among25

other types. CTs aim to test one or more interventions for the improvement of health outcomes,26

where human subjects are recruited and assigned prospectively to the interventions or respective27

placebo controls. In contrast, observational studies are where the causal effects of health outcomes28

are observed by the investigators without controlling the independent variables. Randomized CT29

remains the “gold standard” in evaluating the safety and efficacy of the intervention. At the same time,30

observational studies allow for much less expensive and larger-scale investigations using existing or31

prospective data [1–3]. In either case, it is crucial to ensure the balance between the study groups32

at the baseline, and that no systemic difference between study groups interferes with the causal33

relationship between the variables of interest and study outcomes [4]. Baseline characteristics,34

typically found in “Table 1” in CT publications, describe the demographic and relevant features35

collected at the beginning of the study for all participants between study groups. Depending on36

the study outcomes, the baseline characteristics may include sociodemographics, anthropometrics,37

confounding medical conditions, etc. For observational studies, the baseline features can help design38

the study by matching the cohort by the confounders and covariates. The showcase of baseline39

characteristics shows the reader how representative the study population is and how applicable the40

results would be. It validates the study design, increases the statistical efficiency, and helps the41

investigators draw logical conclusions [5–7].42

Currently, general guidelines and considerations for the selection of baseline features exist [8].43

However, most of the relevant features are study-specific and require the investigators’ judgment.44

This may lead to an overlook of relevant confounders or covariates. Alternatively, for observational45

studies in particular, the improper selection of confounders/covariates from baseline features may lead46

to over-adjustment bias [9]. In addition, the reporting of baseline feature variables is not standardized47

and consistent across studies even for similar interventions or health outcomes. To tackle this issue in48

clinical research, we introduce CTBench, a benchmark to assess the role of language models (LMs)49

in aiding clinical study design. CTBench requires these models to predict the baseline characteristic50

variables of a clinical study based on the CT metadata. This study is the first to use LMs to solve the51

challenging task of designing the baseline features for both CTs and observational studies.52

To achieve this, we create the benchmark from the centralized CT repository along with human53

annotation. We create two expansive datasets: 1) “CT-Pub” which includes the metadata and baseline54

features from 1,690 CTs collected from the clinicaltrials.gov API, and, 2) “CT-Repo” which55

contains a subset of 100 trials where the baseline features are retrieved from the related clinical56

publications via human curation.57

The main contributions of this work include: 1) we propose a benchmark (CTBench) to use LMs to58

develop AI support tools for CT, assist researchers in selecting baseline features and design more59

efficient and robust clinical studies; 2) we create two CT metadata datasets with associated baseline60

features derived from a definitive repository and published papers; 3) we develop two automated61

evaluation methods for comparing predicted and actual trial baseline features, “ListMatch-LLM" and62

“ListMatch-BERT", and validate them with “human-in-the-loop” evaluations; and 4) we demonstrate63

CTBench by using robust prompt engineering techniques on several LLMs to generate the baseline64
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feature variables and evaluate their performance results. 5) Our data, code, and demo examples are65

available at https://github.com/nafis-neehal/CTBench_LLM.66

2 Related Work67

Recent applications of LLMs show that they can serve as powerful tools alongside human evaluators68

[10, 11]. They have been efficiently deployed for extracting clinical information with models such69

as the CT-BERT and MT-clinical BERT [12, 13]. CliniDigest showed a similar value, reducing70

10,000-word CT descriptions into 200-word summaries using GPT 3.5 [14]. LLMs have been shown71

to have further uses in comparing similarity among trials to improve result comparison and aid in the72

precision design of subsequent studies [15]. Advances in prompting have additionally increased the73

use cases, both in specific medical specialties and generalized contexts [16–18]74

Research exists on using LLMs to aid in creating eligibility criteria for CTs [19–22]. Critical2Query75

was validated on 10 CTs of different medical contexts to produce inclusion and exclusion criteria for76

the resolution of previous conditions, disease severity, and disease duration [19]. TrialGPT proposed77

an LLM that could potentially reduce 42.6% of the screen time needed to match CTs by domain78

experts without compromising in near-expert level grouping [20]. AutoCriteria similarly shows79

promising extraction of eligibility criteria through a set of 180 manually annotated trials [21].80

However, automation of proposing baseline features of CTs is lacking. Since baseline features of81

CTs have become significantly more complex from 2011-2022 [23], better approaches for suggesting82

a generalizable and standardized set of cohort demographics and features are needed. Adequately83

training and validating LLMs for these clinical tasks requires relevant and feature-rich datasets.84

Several works have leveraged the clinicaltrials.gov database that has information for over85

300,000 research studies conducted in more than 200 countries [12, 15, 16, 19, 21]. However, the86

prioritization of creating CT eligibility tools has left patient descriptor data relatively understudied.87

CTBench addresses gaps between study criteria and features that are reported in databases such as88

clinicaltrials.gov in comparison to what appears in the final publication. For example, where89

age, sex, race, ethnicity, region of enrollment, and hemoglobin A1C may be reported on databases90

[24], investigators ensured that additional baseline characteristics of fasting serum glucose, duration of91

diabetes, BMI, weight, waist circumference, estimated GFR, albumin-to-creatinine ratio, medication92

use, and cardiovascular parameters were included in the final report [25]. As only 4 baseline features93

are consistently reported by greater than 10% of studies on these well-used databases, the development94

of publicly available and accurate baseline feature databases is necessary [26]. Current datasets95

that attempt to address this are limited by low CT cohort size or have sufficient patient data but are96

sourced from general clinical notes in place of CTs [27, 28]. Other projects do create datasets from97

high-quality, manually annotated CTs, but do not provide public access [21]. Here, our constructed98

datasets are relevant to baseline demographics (CT-Repo, CT-Pub), with human annotation to include99

all the features of a reported clinical study (CT-Pub), and larger than previously available CT data100

sets with a complete set of patient demographic data [27, 28].101

3 Methodology102

3.1 Data Construction103

We collect CT data from clinicaltrials.gov using their publicly available API. Our selection104

criteria include studies that are: 1) interventional trials, 2) completed with results reported, 3) related105

to one of five common chronic diseases: hypertension, chronic kidney disease, obesity, cancer,106

diabetes, and 4) reported at least six baseline features. The requirement for a minimum of six baseline107

features ensures the inclusion of studies with more comprehensive data beyond commonly reported108

features such as age group, race/ethnicity, and sex. This criterion is implemented to ensure the109

robustness of our dataset, as some features from the publication about CT may not be reported on the110

clinicaltrials.gov.111
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Table 1: A sample example from CTBench with CT metadata and corresponding baseline features.
Field Data
Trial ID NCT00000620

Trial Title Action to Control Cardiovascular Risk in Diabetes (ACCORD)

Brief Summary The purpose of this study is to prevent major cardiovascular events (heart attack, stroke, or cardiovascular death) in adults
with type 2 diabetes mellitus using intensive glycemic control, intensive blood pressure control, and multiple lipid management.

Eligibility Criteria

Inclusion Criteria:
* Diagnosed with type 2 diabetes mellitus, as determined by the new American Diabetes Association guidelines,
which include a fasting plasma glucose level greater than 126 mg/dl (7.0 mmol/l), or a 2-hour postload value in the
oral glucose tolerance test of greater than 200 mg/dl, with confirmation by a retest
....
Exclusion Criteria:
...

Conditions Atherosclerosis, Cardiovascular Diseases, Hypercholesterolemia, ...

Primary Outcomes First Occurrence of a Major Cardiovascular Event (MCE), ...

Interventions Anti-hyperglycemic Agents, Anti-hypertensive Agents, ...

Baseline Features Age, Gender, Ethnicity (NIH/OMB), Race, Region of Enrollment, Previous cardiovascular disease (CVD) event,
Glycated hemoglobin, Blood pressure, Cholesterol, Triglycerides, Diabetes duration

For each CT, we collect several types of information (see Table 1). We initially started with 1798112

studies returned from the API query. After thorough pre-processing steps, including removing113

duplicate trials and trials with missing values, we are left with 1693 CTs for our final study.114

From our 1693 CTs, we construct two datasets: "CT-Repo" and "CT-Pub" summarized in Table 2115

The CT-Repo dataset consists of 1690 trials, with the remaining three trials used as example trials116

for three-shot learning in LMs. We randomly pick 100 CTs from the CT-Repo dataset to build the117

CT-Pub dataset. For each trial in CT-Pub, human annotators manually collect the list of baseline118

features reported in the publications associated with the CT and ensure that: 1) each CT has at least119

one relevant publication reporting the trial results, 2) the publication contains a table where the120

baseline features featured for the trial are fully reported, and 3) the publication is evidenced to be121

connected to the trial by mentioning the trial ID in the publication and/or in the publisher’s website.122

Table 2: Dataset description for CTBench.
Total

n
Cancer
n (%)

Chronic Kidney Disease
n (%)

Diabetes
n (%)

Hypertension
n (%)

Obsesity
n (%)

CT-Repo 1690 484 (28.64%) 169 ( 10.00%) 479 (28.34%) 266 (15.74%) 292 (17.27%)
CT-Pub 100 16 (16.00%) 18 (18.00%) 34 (34.00%) 14 (14.00%) 18 (18.00%)

Challenges: The data extracted from clinicaltrials.gov include title, summary, conditions,123

eligibility criteria, interventions, primary outcomes, and baseline features in free-text format (Table124

1). The trial titles and brief summaries provide an overview of the study in plain language, often125

without consistent terminology. Conditions refer to health issues/diseases being studied written in126

free text, which can lead to inconsistencies in interpretation due to polysemy (multiple meanings) and127

synonymy (different terms for the same concept). Eligibility criteria, encompassing both inclusion and128

exclusion criteria, are detailed as paragraphs, bulleted lists, or enumeration lists, without adherence129

to common standards or controlled vocabularies. Interventions describe the treatments or procedures130

being tested, in unstructured text. Primary outcomes and baseline features outline the main objectives131

and initial data points of the study, respectively, and are similarly unstructured, lacking standardization132

in terms of medical dictionaries or ontologies. This variability and lack of standardized language133

across all these fields pose significant challenges for both data extraction and results analysis.134

3.2 Generation Task135

The CTBench task is to predict the baseline features of a study given the metadata. We demonstrate136

our benchmarking process and evaluate performance results on two state-of-the-art LMs, open-source137

LLaMa3-70B-Instruct [29] and commercial GPT-4o [30]. For GPT-4o, we used the API provided by138
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Figure 1: Workflow of CTBench.

OpenAI [31]. For LLaMa-3-70B-Instruct, we used APIs from GROQ [32] and HuggingFace’s server-139

less inference service [33]. We investigate two in-context learning settings for feature generation:140

zero-shot and three-shot [34]. Each query has the system message and the user query (Figure 1). For141

the zero-shot setting, we provide CT metadata (excluding the baseline features) as input context to142

these models (Figure 2), and query the models to generate a list of probable baseline features relevant143

to the clinical trial. In the three-shot setting (see Appendix C for full prompt template), we extend the144

zero-shot system prompt by appending trial metadata and corresponding answers (i.e., list of baseline145

features) for three example trials. All our generation prompts are in Appendix C. For CT-Repo, the146

generation task involves predicting the list of baseline features reported in the clinicaltrials.gov147

portal using the CT metadata presented in Table 1. For the CT-Pub dataset, the generation task is to148

predict the baseline features collected from the publications relevant to each trial.149

3.3 Evaluation Task150

The evaluation task compares the "candidate features" suggested by each LLM with the "reference151

baseline features" from the CT publications for CT-Pub or clinicaltrials.gov API for CT-Repo.152

The objective is to evaluate each pair of features, one from the reference list and one from the candidate153

list, to determine if they are contextually and semantically similar, i.e., if they match. We remove154

noisy keywords from the feature lists (e.g., "Customized," "Continuous") during pre-processing.155

After identifying all matched pairs, the final results are categorized into three lists: matched pairs,156

unmatched reference features, and unmatched candidate features. We employ two approaches for157

identifying matched pairs: “ListMatch-BERT" and “ListMatch-LM." For the evaluation task, we158

use Trial2Vec and GPT-4o for ListMatch-BERT and ListMatch-LM, respectively. The Trial2Vec159

implementation requires local installation and a GPU for inference, as it is not readily available160

through HuggingFace or other inference service providers. We utilized NVIDIA Ampere A100 and161

NVIDIA T4 GPUs via Google Colab for our work. For GPT-4o as an evaluator, we again used the162

OpenAI APIs available through their public site. All hyperparameters related to our generation and163

evaluation tasks are presented in Appendix B. We use a fixed seed and a temperature value of 0.0164

across all experiments to ensure the outputs are deterministic and reproducible [35].165

ListMatch-BERT: Here we consider a variation of the BERTScore [36]. We utilize Trial2Vec166

architecture proposed for CTs, built on top of TrialBERT [15] (MIT license) to generate embeddings167

for each feature and then calculate a cosine similarity matrix for each set of pairs. We explore168
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Figure 2: Prompt template for generation (in zero-shot setting) and evaluation

different matching threshold values Th ∈ {0.6, 0.7, 0.8, 0.9}, and recommend using the value of 0.7169

(see Appendix D for detailed comparison and reasoning). Matches are considered starting from the170

pair with the highest cosine similarity above Th, and these pairs are added to the matched list, and171

removed from their respective lists and the similarity matrix. Matching continues until: 1) no more172

matches are found with similarity greater than Th, or 2) no more features remain to match in either173

the reference or candidate list. A detailed description of the ListMatch-BERT process is provided in174

Appendix A.175

We report mean Precision, mean Recall, and mean F1 scores across all studies for each dataset. Once176

the lists of matched pairs, unmatched references, and unmatched candidates are established, and177

given: TP (True Positives): nmatched_pairs, FP (False Positives): nremaining_candidate_features, FN178

(False Negatives): nremaining_reference_features, we calculate precision and recall:179

Precision =
TP

TP + FP
=

nmatched_pairs

nmatched_pairs + nremaining_candidate_features
(1)

Recall =
TP

TP + FN
=

nmatched_pairs

nmatched_pairs + nremaining_reference_features
(2)

ListMatch-LM: Here GPT-4o is prompted to identify matched pairs and the remaining unmatched180

sets (see Figures 1 and 2). For each study, GPT-4o receives the reference features and candidate181

features as input. Trial metadata (excluding the actual baseline features) is provided as context.182

GPT-4o is tasked with identifying matched pairs and generating unmatched lists, which are returned183

as a JSON object. Mirroring the procedure used in ListMatch-BERT, the model is instructed to184

remove matched pairs from further consideration immediately upon identification, ensuring that185

no reference feature is matched to multiple candidate features, and vice versa. Once the matches186

are generated and the unmatched items are identified, we calculate precision, recall, and F1 scores187

similarly as described above and report their means over all the studies. Appendix C provides the full188

evaluation prompt.189

Human Evaluation: To evaluate the accuracy of GPT-4o as an evaluator, we employ clinical domain190

experts to serve as human annotators. Their task is to identify matched pairs for each of the 100 CT191

studies in the CT-Pub dataset. To streamline the evaluation, we focus exclusively on the candidate192

responses generated by GPT-4o in the three-shot setting. The annotators receive the same information193
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Figure 3: Performance Comparison for CT-Pub and CT-Repo datasets

provided to GPT-4o during its evaluation and are instructed to match features using the same criteria.194

We developed a web tool to collect and store the responses from all annotators for each of the 100195

studies in a database. We also solicit evaluations from human annotators regarding the remaining196

unmatched candidate features that may merit further examination. Our findings indicate a high197

level of agreement between the human annotator and GPT-4 Omni’s evaluations, underscoring the198

reliability of GPT-4o in capturing nuanced similarities between features. Detailed results of these199

experiments are provided in Appendix D.200

4 Results and Discussion201

In CTBench, precision measures the proportion of predicted baseline features that are accurate, while202

recall measures the proportion of actual baseline features that the model successfully identifies. We203

find recall to be of more interest as it ensures comprehensive identification of all relevant baseline204

features, which is crucial for accurately characterizing study cohorts and maintaining the validity205

and robustness of clinical trial results. High recall minimizes the risk of missing critical features that206

could undermine the study’s conclusions. Figure 3 shows the performance comparison of GPT-4o207

and LLaMa3 for CT-Pub and CT-Repo datasets. We find that GPT-4o (3-Shot) leads in recall in the208

CT-Pub dataset, while LLaMa3 (0-Shot) excels in the CT-Pub dataset for precision and F1 scores. In209

the CT-Repo dataset, GPT-4o (3-shot) outperforms LLaMa3 across all ICL settings and metrics.210

4.1 Performance Analysis in Generation Tasks211

4.1.1 Analysis on CT-Pub Dataset212

Observation about Metric Values and Model Performance: The values of recall, precision, and213

F1 scores are not particularly high, indicating a moderate performance of LLaMa3 and GPT-4o in214

predicting baseline features. This suggests there is room for improvement in the models’ ability to215

generate accurate and comprehensive baseline features.216

Comparison of Precision, Recall, and F1 Scores Across Models: The models exhibit varied217

strengths across different metrics. LLaMa3 (0-Shot) demonstrates the highest precision and F1 score,218

with an F1 score of 0.48, indicating its strong capability to accurately identify relevant baseline219

features without requiring prior examples. GPT-4o (3-Shot) leads in the recall, highlighting its220
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superior ability to retrieve a comprehensive list of relevant baseline features when examples are221

provided. This suggests that GPT-4o benefits significantly from example-based learning, whereas222

LLaMa3 performs robustly even in a zero-shot setting, making it a versatile choice for scenarios with223

limited training data.224

ICL Setting Analysis:225

• Zero-shot vs. Three-shot: In the CT-Pub dataset, LLaMa3 performs better in the zero-shot226

setting, particularly in precision and F1 score. GPT-4o, however, benefits more from the227

examples, performing better in the three-shot setting in the recall.228

• Model Benefit from Examples: GPT-4o shows a significant improvement in recall when229

examples are provided (3-shot), whereas LLaMa3 shows a higher overall performance in230

the zero-shot setting.231

4.1.2 Analysis on CT-Repo Dataset:232

Observation about Metric Values and Model Performance: Similar to the CT-Pub dataset, the val-233

ues are not exceptionally high, reflecting moderate performance in predicting baseline features. This234

emphasizes the need for enhanced models to improve prediction accuracy and comprehensiveness.235

Comparison of Precision, Recall, and F1 Scores Across Models: The CT-Repo dataset reveals that236

GPT-4o (3-Shot) outperforms LLaMa3 in precision and F1 score, achieving a notable F1 score of237

0.52, while providing comparable performance in recall. This highlights GPT-4o’s robustness and238

effectiveness when prior examples are available, making it highly suitable for matching or adjusting239

treatment and control subjects in clinical trials and observational studies. LLaMa3 (3-Shot) also240

demonstrates strong performance, particularly in the recall, indicating its capability to retrieve a241

broad range of relevant features when examples are provided. The overall moderate performance of242

both models reflects the complexity and challenging nature of accurately predicting baseline features243

from clinical trial metadata.244

ICL Setting Analysis:245

• Zero-shot vs. Three-shot: In the CT-Repo dataset, both models perform better in the246

three-shot setting. GPT-4o significantly benefits from examples, especially in precision and247

recall.248

• Model Benefit from Examples: GPT-4o shows substantial improvement with examples249

(3-shot), indicating its dependency on context for better performance. LLaMa3 also250

shows improved performance with examples but retains good performance in the zero-251

shot setting. Since the ground-truth baseline features for CT-Repo were collected from252

the clinicaltrials.gov API, there are specific nuances, such as reporting ’Region of253

Enrollment’ as a baseline feature, which is not typically seen in CT-Pub publications. We254

believe this context explains why both GPT-4o and LLaMa3 benefit from example-based255

learning in this scenario.256

4.1.3 Why is GPT-4o under-performing significantly and consistently in zero-shot setting?257

GPT-4o (zero-shot) underperforms across all cases and scores in both datasets due to the lack of258

contextual learning from prior examples, which is crucial for accurately interpreting and predicting259

complex, domain-specific clinical trial features. This setting relies solely on pre-trained knowledge,260

which is insufficient for the nuanced and detailed task of baseline feature prediction in clinical trials.261

4.2 Performance on Evaluation Tasks262

GPT-4 Omni Scores: GPT-4 evaluation scores generally surpass BERT scores at a 0.7 threshold263

due to GPT-4o’s broader understanding and contextual evaluation, which captures more nuanced264

similarities between reference and candidate baseline features. This results in a more generous and265

context-aware assessment compared to the stricter, more literal BERT scoring.266
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BERT Scores (threshold = 0.7): After examining several thresholds, we recommend 0.7 to be used267

as the threshold value for producing BERT scores using ListMatch-BERT. The 0.7 threshold for BERT268

scores signifies a balance between generous and strict evaluation criteria, requiring high similarity for269

matches to be considered valid. This, however, reduces precision and recall by demanding closer270

alignment between generated and actual features compared to lower threshold values. Lowering271

the threshold would allow for more matches but could increase false positives and false negatives,272

affecting the precision and recall negatively. We present a thorough evaluation of BERT scores at273

different threshold values in Appendix D.274

Comparing both metrics, we believe that GPT-4 Omni scores suggest a comprehensive and context-275

sensitive evaluation, crucial for accurately assessing the quality of LM-generated baseline features in276

clinical trial design.277

5 Limitations278

CT Data Expansion: Our results, derived from CT data, demonstrate the potential of LLMs to279

significantly aid in the design and implementation of clinical studies. But the CTBench consists of280

only RCTs for 5 chronic diseases gathered from clinicaltrials.gov with only a subset annotated281

with additional "gold-standard" from CT-related papers. Using our tools and framework, CTBench282

could be expanded with other CT repositories, more published CT results, and more diseases. Future283

work should also explicitly incorporate and evaluate observational studies.284

Evaluation Methods: We have presented two LLM-based matching methods and associated evalu-285

ation metrics, but how to best evaluate predicted descriptors is an interesting research question in286

itself. Currently, each reference or candidate item is permitted to be matched only once to provide287

a standardized fair evaluation across models. But other strategies allowing multiple matches are288

possible. We hope that the human-in-the-loop evaluation tools provided to compare the LM and289

human evaluations assist in the further evolution of effective evaluation strategies.290

Additional Methods for Generation: Our baseline CTBench study focuses on benchmarking the291

two state-of-the-art LLaMa3-70B-Instruct and GPT-4o models only with zero-shot and three-shot292

prompts due to resource constraints. By contrasting an open-source model (LLaMa3-70B-Instruct)293

with a closed-source model (GPT-4o), we aim to provide a preliminary evaluation of current leading294

technologies. In our experiments, both for the text generation and evaluation API calls, we have295

maintained a consistent approach by using a fixed seed and a temperature value set to 0.0. This296

methodological choice is based on OpenAI’s documentation [35], which claims that a fixed seed297

and a temperature parameter of 0.0 are likely to produce reproducible and deterministic results. But298

many other possibilities exist. Running each API call multiple times with the same question and299

considering aggregated answers could improve results. We hope that CT-bench will spur new prompt300

and model research to expand the scope and depth of AI methods for CT design support.301

Impact of Societal Bias: Societal biases present in language models (LMs) can potentially be302

transferred to clinical trials through the models’ baseline feature predictions. This bias could skew the303

characterization of study cohorts, leading to biased clinical results and affecting the generalizability304

and applicability of the findings. Such biases in baseline features can undermine the validity of305

clinical trials, resulting in health outcomes that do not accurately reflect the broader population.306

6 Conclusion307

CTBench serves as a pioneering benchmark for evaluating LLMs in predicting baseline features from308

CT metadata - a critical component in CT design. By leveraging datasets from clinicaltrials.gov309

and curated from trial publications, and utilizing advanced evaluation methods such as ListMatch-LM310

and ListMatch-BERT, CTBench provides a robust framework for assessing AI-generated baseline311

features. Our results establish a promising baseline, validated through expert human evaluations, and312

underscore CTBench’s potential to significantly enhance the efficacy and robustness of clinical trials313

through advanced AI research.314
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