
2017 20th International Conference of Computer and Information Technology (ICCIT), 22-24 December, 2017

Cloud-POA: A Cloud-Based Map Only
Implementation of PO-MSA on Amazon Multi-node

EC2 Hadoop Cluster
Nafis Neehal, Dewan Ziaul Karim, Ashraful Islam

Department of CSE
Daffodil International University

Dhaka, Bangladesh
{nafis.cse, ziaul.cse, ashraful.cse}@diu.edu.bd

Nafis Neehal, Dewan Ziaul Karim, Ashraful Islam
Department of CSE

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

{nafis.cse, ziaul.cse, ashraful.cse}@diu.edu.bd

Abstract—Sequence alignment in bioinformatics and compu-
tational biology has always been a challenging task. With Next
Generation Sequencing (NGS) techniques in hand, researchers
are now capable of studying biological systems at a level never
been possible before. Scientists now have billions of bytes of
biological data to work with, trillions of sequences to align. But
this comes at a cost of requiring computing machines having
a tremendous amount of computational and analytical power.
Purchasing this huge amount of hardware and setting up a
standalone infrastructure would not only cost an unnecessarily
massive amount of money and labor but also would become
troublesome to maintain. Moreover, for aligning a huge number
of DNA or Protein sequences a scalable multiple sequence align-
ment (MSA) algorithms is needed with decent accuracy. In such
context, this paper presents a novel implementation of Partial
Order Alignment (POA) algorithm on a multi-node Hadoop
Cluster running on MapReduce framework. The implementation
was done in Amazon AWS platform with multiple EC2 instances.
It is a map-only implementation with Hadoop Streaming. The
result of this implementation shows a drastic reduction in runtime
with no accuracy degradation.

Index Terms—NGS, POA, PO-MSA, Hadoop, Mapreduce,
Hadoop Streaming

I. INTRODUCTION

Multiple Sequence Alignment (MSA) is a general extension
of Pairwise alignment. When more than two biological se-
quences get aligned to each other, it is called multiple sequence
alignment. The alignment can be based on DNA or Protein.
There can be an evolutionary relationship among different
query sequences in an input set. From this MSA, phylogenetic
analysis can be done. Moreover, sequence homology can also
be inferred.

The approach which is mostly used in terms of MSA uses
a technique called progressive alignment. This is basically a
heuristic search which is also known as the hierarchical or tree
method. It was developed by Paulien Hogeweg Ben Hesper
in 1984 [1]. Progressive alignments are not always globally
optimal because of the errors made at any stage in growing
MSA (does not matter whether its the beginning stage or any
stage at the middle or end) and all those errors are carried into
the final result. So this creates a problem in the accuracy of

the result. Moreover, if all the sequences of the input set are
distantly related, a significant decrease in the performance may
occur. However, modern progressive methods usually modify
their scoring function [2].

There are many progressive alignment methods. The Clustal
family [3], especially the weighted variant ClustalW [4] is
vastly popular. It is used for the construction of the phyloge-
netic tree. Another one which was in use is ClustalW2 (expired
in August 2015). Later Clustal Omega was suggested which
actually performs based on seeded guide trees and Hidden
Markov Model (HMM) techniques for protein alignments. Var-
ious MSA tools for progressive DNA alignments are offered
by them. Multiple Alignment using Fast Fourier Transform
(MAFFT) [5] is one of them. Kalign is another decent quality
MSA algorithm and it is similar to progressive alignment
methods for sequence alignments.

There is another method which has a similar working pro-
cedure to progressive method but realigns the initial sequences
as well as adding new sequences to the MSA constantly. This
method is known as the iterative method. This procedure can
decrease the errors inherent in progressive methods. Unlike
progressive methods, iterative methods can go back to the
pairwise alignments which were calculated earlier. It helps to
optimize a general objective function, for example, finding a
score which symbolizes high-quality alignment.

In various software packages, different types of iterative
alignment algorithms have been implemented. Choosing a best
technique is always tough although many comparisons and
reviews have been done [6]. There are many software pack-
ages. PRRN/PRRP is one of them which uses hill climbing
algorithm which helps in optimizing the MSA alignment score
[7]. DIALIGN [8] is another iterative algorithm which focuses
barely on local alignments without inaugurating a gap penalty.
MUSCLE [9] is another popular iterative alignment algorithm.
MUSCLE, which stands for Multiple Sequence Comparison
by Log Expectation uses double distance measures Kmer
Kimura. For distance measurement of unaligned pairs of
sequences, Kmer is used. Whereas, Kimura is used for the
aligned pair of sequences. Guide tree is built using UPGMA

978-1-5386-1150-0/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on September 25,2022 at 21:07:27 UTC from IEEE Xplore. Restrictions apply.

method.
For large scale sequence data sets, it is necessary for existing

MSA algorithms to be executed in a parallel manner with
sequence data to be distributed over various computing cluster.

In case of large sequence data sets the sequence data is
needed to be distributed over several computing clusters and
MSA algorithm is needed to be executed in a parallel manner.
Thats where cloud computing plays its vital role. Though
cloud computing is sometimes considered to provide only
rental of computing power and storage, it actually provides
different types of services too. The principle service models
of cloud computing are Software as a service (SaaS), Infras-
tructure as a service (Iaas) and Platform as a service (Paas).

This paper presents a novel implementation of a very
popular MSA algorithm namely Partial Order Alignment in
the cloud platform. The implementation was done in Amazon
AWS platform with multiple EC2 instances. A Hadoop Cluster
was built and MapReduce framework was used in this imple-
mentation and the alignment job was run as a map only job.
The result of this implementation shows a drastic reduction in
runtime with no accuracy degradation.

The remaining part of the paper is arranged in the following
manner - Related works done prior to this implementation is
discussed in Section II. Details of POA algorithm is discussed
in Section III. Hadoop Streaming and MapReduce Framework
is Discussed in Section IV. Cloud-POA implementation details
are described in Section V. Performance analysis is done in
Section VI. Finally, conclusion with some future work scopes
is described in Section VII and Section VIII.

II. RELATED WORKS

Implementing sequence alignment algorithms in cloud plat-
form is a very recent trend. Lee et al [10] described a graphical
representation of an MSA which can be aligned straightly by
pairwise dynamic programming. Usually, progressive align-
ment methods tend to reduce an MSA to a linear profile
for each of the alignment steps. But this results in some
loss of information which eventually has a toll in accurate
alignment. Lee et al banished the necessity to diminish the
MSA to a profile. This also enabled POA to guarantee that the
optimal alignment of each new sequence against each sequence
in the MSA would be taken into account. This algorithm
improved in comparison with other algorithms in terms of
linear time complexity (e.g. an alignment of 5000 sequences in
4h on Pentium II), which enabled the construction of massive
and complex alignments. The utility of this algorithm was
demonstrated on a family of multi-domain SH2 proteins and
on EST assemblies which contained alternative splicing and
polymorphism.

Christopher Lee also described generating consensus se-
quence from POA in a paper published in 2003 [11]. It stated
a dynamic programming algorithm name heaviest bundle for
generating multiple consensus sequences. The degree of struc-
tural complexity of the source alignment is revealed by the
number and relationships of these consensus sequences. The
paper illustrated its value for inspecting expressed sequence

alignments to identify alternative splicing, rebuild full-length
mRNA isoform sequences from EST fragments. It also helped
to distinguish paralog mixtures which can lead to inaccurate
SNP predictions.

Ramu Chenna et al. [12] described the Clustal series of pro-
grams that are used for MSA of not only nucleic acid but also
protein sequences. Eventually, it helps to build phylogenetic
trees.

A review article [13] stated about the integration of dif-
ferent MSA methods with cloud computing. Next generation
sequencing technologies are also changing the scenery of
molecular biology. It results in huge amounts of raw sequence
data which may eventually flood the databases. Since this ever-
increasing sequence data sets create a noteworthy bottleneck,
it is a burning necessity nowadays to implement the existing
MSA algorithms in such a way so that they can run a parallel
manner with sequence data dispersed over a computing cluster.
When MSA algorithms get integrated with cloud computing
technologies, speed is possibly going to improve. Same can
be said in terms of quality and capability for MSA to work
with a huge number of sequences.

Yu-Jung Chang et al. [14] described a next gen genomic
sequence assembler based on MapReduce framework. The pa-
per states CloudBrush a newly distributed genome assembler
based on string graphs along with MapReduce framework.
This assembler was evaluated against GAGE benchmarks to
measure the assembly quality with other assemblers. The result
showed that this new assembler had a moderately low (The
assembler had a moderate N50) misassembly rate of misjoins
and indels of >5 bp.

Michael C. Schatz et al. [15] created CloudBurst which
uses the open source Hadoop implementation of MapReduce
framework. It helps parallelizing the execution using multi-
ple processing nodes. CloudBursts running time changes in
a similar manner with the number of reads mapped. In a
configuration with 24-processors, CloudBurst is up to 30 times
faster than RMAP (executing on a single core).

Using cloud technologies in genomics and prepare for 2nd
or 3rd generation DNA sequencing has always been a chal-
lenging task. For this purpose, a Hadoop MapReduce-based
application named CloudAligner [16] was created which can
achieve better performance, better accuracy and can provide
a suitable user-friendly interface. CloudAligner omitted the
reduce phase, thus a huge performance gain was observed
over cloud-based counterparts (35 to 80 percent). It was seen
from the experiment that CloudAligner easily outperformed
CloudBurst from 35 to 67 percent.

The reason for choosing POA for implementation are some
facts which should be taken into consideration. For example,
Probcons, T-Coffee, Probalign, MAFFT were more accurate
but consumed a huge amount of time and memory. On the
other hand, ClustalW, Dialign, and MUSCLE were faster and
less memory consuming, but less accurate. In case of POA,
accuracy is quite good, and the runtime is moderate. So this is
a kind of balanced algorithm compared to all the others. Since
its accuracy is quite good and generates a moderate runtime, so

Authorized licensed use limited to: University of Florida. Downloaded on September 25,2022 at 21:07:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. POA Structure

if somehow the runtime can be decreased, then it can provide
a really good outcome. There is a huge potential of decreasing
the runtime radically through parallel implementation, which
can eventually lead to better results than all other algorithms
including CloudAligner or CloudBurst. Moreover, POA has a
scalable structure in order to deploy for aligning large number
sequences. All these considerations were taken into account
while choosing POA for the cloud implementation.

III. PARTIAL ORDER ALIGNMENT

POA is a graph based representation of an MSA algorithm
[10] where nodes represent sequence letters and directed edges
are drawn between two consecutive letters in each sequence. A
series of nodes linked by directed edges can uniquely represent
a single sequence.

If two sequences are given, PO-MSA structure can be drawn
by redrawing the aligned version of these two sequences in
PO-MSA format (Figure 1c). And if two identical letters are
aligned, they are fused together as a single node. If two
nonidentical letters are aligned, then they are represented
as separate nodes but are remembered as being aligned to
each other (Figure 1d). All the relevant information about
previous nodes (ID of original sequences and index position
of that letter in the original sequence) are stored in the newly
generated node in case of node fusion. Hence from the PO-
MSA, it is possible to reconstruct the original MSA and vice
versa which leads to zero information loss and no degeneracy.

PO-MSA graph obeys linear ordering in regions where
nodes have single outgoing edges. In case of linear ordering,
for two distinct nodes i,j the ordering can be i <j XOR j <i
where the ordering relation i <j represents that one or more
paths of directed edges might exist between node i and j. But
in case of partial ordering, such scenarios might occur where
there is no directed edge from j to i OR i to j. Nodes with
multiple incoming or outgoing edges are called junction nodes.
A junction node has multiple branches defined

by different edges edge1, edge2, edge3..... and so on. Two
different nodes on different branches might not have any

ordered relation to one another. So, PO-MSA data structure
is basically a Directed Acyclic Graph (DAG).

POA is a simple extension of the Needleman-Wunsch
algorithm which aligns a PO-MSA with a linear sequence.
In case of POA, instead of using two linear sequences in
two axes of the 2D matrix, one of the linear sequences is
replaced by a partial order containing branching. Then the
partial order sequence is transferred to the 2D matrix. On
any given surface, POA shows similar behavior as a standard
2D alignment algorithm with the same three moves (diagonal,
vertical and horizontal). Diagonal and Horizontal moves are
somewhat extended to allow any of the incoming surfaces
meeting at any junction node.

At a given cell (n,m) in the matrix, the scores for all
possible moves are calculated and the move with the
maximum score is selected and saved at this cell which is
given by the following equation -

S(n,m) = max


S(p,m− 1) + s(n,m)

S(p,m) + ∆(m)

S(n,m− 1) + ∆(n)

(1)

while aligning residue n to residue m and the horizontal or
vertical gap penalty is ∆ considering all predecessor nodes p
that has a directed edge from p → n.

PO-MSA nodes are fused according to the (iS, jG) mapping
as follows -

• If node iS and jG are aligned and have identical letters,
then they are fused

• Else if node iS and jG are aligned but do not have identical
letters and if jG is already aligned to another node kG
whose letter is identical to iS then iS and kG are fused

• Else iS and jG are recored to aligned with each other as
separate nodes.

After this, finally, the redundant directed edges are removed
and the final PO-MSA graph is constructed.

IV. HADOOP’S MAPREDUCE AND STREAMING

A. Apache Hadoop

Apache Hadoop is an open-source software framework.
Distributed storage and processing of huge data sets for big
data using MapReduce framework is done with hadoop. It
consists of computer clusters built with different computer
hardware rented by the authority to the clients. Hadoop has
a storage system which is known as Hadoop Distributed
File System (HDFS), and a processing system which is a
MapReduce programming model. Hadoop splits single large
files into chunks of smaller data blocks and distributes them
across the nodes in a cluster which allows the data to be
processed efficiently and faster.

Authorized licensed use limited to: University of Florida. Downloaded on September 25,2022 at 21:07:27 UTC from IEEE Xplore. Restrictions apply.

B. Mapreduce Framework

MapReduce is a programming model for processing large
data sets [17]. Users define a map function which processes a
huge amount of data and generates key/value pair <Ki,Vi>as
an intermediate data. A reduce function is also defined that
merges all the intermediate values associated with the same
intermediate key and produces the final output. MapReduce
framework architecture is shown in Figure 2.

C. Hadoop Streaming

Hadoop streaming is a unique utility on top of Hadoop
distribution. Programmers are now capable of creating and
running MapReduce jobs written and exported as any type of
executable or script as the mapper and the reducer. As Cloud-
POA was implemented in Python 3.6, so Hadoop Streaming
had to be used for running Python code on top of Hadoop.

V. CLOUD-POA IMPLEMENTATION

Cloud-POA is a cloud based implementation of POA algo-
rithm. It has been implemented on Amazon AWS platform.
Ten Amazon EC2 nodes were used to build up a Multi-node
Hadoop Cluster upon which the Cloud-POA framework has
been built. The system architecture is shown in Figure 3.

The implementation is described in details in the following
subsections -

A. Input Preprocessing

In this stage, the input file (FASTA) containing n DNA se-
quences was preprocessed by separating labels and sequences
and storing them into two seperate lists namely LABEL_LIST
= label1, label2, label3.....,labeln and SEQUENCE_LIST =
seq1, seq2, seq3.....,seqn. Up to maximum 100k sequences were
taken as input. Number of base pairs was between 150-200.
Synthetic data was used for testing purpose in initial stage
of implementation. Later on, benchmark data was used for
validation with higher number of sequences.

Fig. 2. MapReduce Framework Architecture

TABLE I
CLOUD-POA HADOOP CONFIGURATION

Instance Name Instance Type Number of Machines RAM, HDD, OS
Namenode Master 1 4GB, 16GB, Ubuntu 16.04

Secondary Namenode Master 1 4GB, 16GB, Ubuntu 16.04
Data Node Slave 8 2GB, 4GB, Ubuntu 16.04

Fig. 3. Cloud POA Architecture

B. Hadoop Framework Configuration

Cloud-POA was implemented on Amazon AWS platform.
For Cloud-POA, a Hadoop cluster made of 10 Amazon EC2
instances was built and MapReduce was installed on top of
that. Framework details are given in Table 1.

C. Alignment and POA Graph Generation

After input has been preprocessed, POA algorithm was run
over the input sequences. As Hadoop’s MapReduce framework
has been used for this implementation, the splitting of input
sequences was done automatically by Hadoop’s MapReduce.
Default input split size (mapred.min.split.size) was set to 8
MB, so input files larger than 8 MB was automatically split
and assigned to different mappers for performing alignment
job. The POA Graph was declared as a global object, and from
each split, each input was aligned parallelly to this POA Base
Graph and POA Graph was updated. Algorithm 1 contains the
pseudocode for the mapper implementation of Cloud-POA. As
Cloud-POA is a map only implementation, there is no further
processing and the output of mapper is the final output. In
Mapper, there are 3 modules namely ReadFasta, POAGraph,
and SeqGraphAlignment. ReadFasta does the preprocessing of
input, POAGraph and SeqGraphAlignment do the POA graph
generation part.

D. Consensus Sequences Generation

Finally, when all the alignments and insertions are finished
and the final POA Graph is generated then multiple consensus
sequences is generated by following the HEAVIEST_BUNDLE
algorithm [11]. The pseudocode in Algorithm 2 shows the
overall flow of the algorithm where G is the PO-MSA graph.
In addition to generating consensus sequences C1, C2 . .
.,Cn the top-level function GENERATE_CONSENSI() returns

Authorized licensed use limited to: University of Florida. Downloaded on September 25,2022 at 21:07:27 UTC from IEEE Xplore. Restrictions apply.

their alignment (in G), and assigns each sequence Sk to a
specific consensus (or to none at all). It adds a new sequence
Cb to the PO-MSA to represent each consensus, which follows
the maximum likelihood path P through G.

VI. PERFORMANCE ANALYSIS

Parallel implementation of POA algorithm in Amazon Elas-
tic Compute Cloud (EC2) platform shows exemplary results.
Figure 4 shows a drastic reduction of runtime in Cloud imple-
mentation of POA, unlike the standalone implementation. It
roughly estimates that the runtime gets reduced around 65-70
percent.

Figure 5 shows a comparison between all major MSA
algorithms in terms of runtime and here also Cloud-POA
outperforms all other major MSA.

This comparison was done on GENIE gene finding Bench-
mark data set, containing a total of 793 human genes [19]

Figure 6 shows a portion of the final aligned sequences
along with the consensus sequences which was done on the
GENIE data set mentioned earlier.

VII. FUTURE WORK

In this paper, the POA algorithm which is used is sensitive
to sequence alignment order. This can be a vital issue in
some cases. One possible workaround for this issue is to
use CLUSTAL-like progressive alignment algorithm. In other
words, using a guide tree to establish the best order for align-
ing the sequences. This procedure requires one set of aligned
sequences into another. So this needs expanding the POA
algorithm to align two PO-MSAs to each other. Moreover,
a good guide tree can improve estimated phylogenies [18].

The algorithm used in this paper usually aligns the base
POA graph with the new DNA sequence graph at the very first.
Then the resultant graph is aligned with another new DNA
sequence graph. This procedure continues in an iterative way.
But there is another way to execute this. Consider taking two
sequences and build graphs from them. Now align these two
graphs and we find a resultant graph. Consider naming it as G1
(Graph1). Now for the next two sequences, do the same and
consider naming the new resultant graph as G2 (Graph2). G3,
G4.....,Gn will follow the same procedure. Then if somehow
G1 and G2 can be aligned, G3 and G4 can be aligned, then the
new resultant graphs can be G1,2 and G3,4 respectively. Then
align G1,2 and G3,4 together and continue this process until

Algorithm 1 Mapper in Cloud POA
1: seqno← 0
2: fasta← ReadFasta(args.infile)
3: graphBase← poaGraph()
4: for (label, sequence) in fasta do
5: alignment← seqGraphAlignment()
6: graphBase.incorporateSeqAlignment()
7: end for
8: alignments = graphBase.generateAllAlignments()
9: END =0

Algorithm 2 GENERATE_CONSENSI(S, G, w)

1: while (sequences left to be bundled) do
2: P ← HEAVIEST_BUNDLE(G,w)
3: Cb← CREATE_SEQUENCE_ON_PATH(P,G)
4: I ← ADD_SEQUENCES_TO_BUNDLE(S,B,G,Cb)
5: if I is NULL then

break
6: end if
7: RESCALE_WEIGHTS(I,w)
8: b++
9: end while

10: RETURN list of Cb
11: END =0

there is no more sequences to be aligned. If this can be done,
then it could take less run time than the current procedure. So
this is another sight to look on in the future.

VIII. CONCLUSION

For applying and development of novel graph algorithms to
search for biologically fascinating features in sequence data,
the PO-MSA representation is itself helpful. MSAs can be
used to find and analyze phylogenetic relationships through

Fig. 4. Standalone VS Cloud POA

Fig. 5. Comparison of Major MSA Algorithms with Cloud-POA

Authorized licensed use limited to: University of Florida. Downloaded on September 25,2022 at 21:07:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Final Alignment and Consensus Sequences

homology between sequences. Point mutations including dele-
tion or insertion events (called InDels) can be detected too.
After completing all the experiments, a significant reduction
in terms of run time was observed which eventually provided
a better result than all other sequence alignment algorithms.
Moreover, it also upholds the expected accuracy. Despite
the fact that there are some works that can be done in
future to improve the current implementation, it is already
showing very promising results. Hopefully, the current work
along with all future improvements can assist in extracting
better knowledge concerning sequence alignment which can
play a vital role in terms of identity, similarity, homology,
evolutionary relationship and many other biological aspects.

REFERENCES

[1] Hogeweg P, Hesper B . ”The alignment of sets of sequences and the
construction of phyletic trees: an integrated method”. J Mol Evol. 20
(2): 17586.

[2] Mount DM. (2004). Bioinformatics: Sequence and Genome Analysis
2nd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.

[3] Higgins DG, Sharp PM (1988). ”CLUSTAL: a package for perform-
ing multiple sequence alignment on a microcomputer”. Gene. 73 (1):
237244.

[4] Thompson JD, Higgins DG, Gibson TJ (1994). ”CLUSTAL W: improv-
ing the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice”. Nucleic Acids Res. 22 (22): 46734680. PMC 308517

[5] ”EMBL-EBI-ClustalW2-Multiple Sequence Alignment”
[6] Hirosawa M, Totoki Y, Hoshida M, Ishikawa M (1995). ”Comprehensive

study on iterative algorithms of multiple sequence alignment”. Comput
Appl Biosci. 11 (1): 1318.

[7] Gotoh O (1996). ”Significant improvement in accuracy of multiple
protein sequence alignments by iterative refinement as assessed by
reference to structural alignments”. J Mol Biol. 264 (4): 82338.

[8] B. Morgenstern, DIALIGN: multiple DNA and protein sequence align-
ment at BiBiServ, Nucleic Acids Research, vol. 32, supplement 2,
pp.W33W36, 2004.

[9] R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy
and high throughput, Nucleic Acids Research, vol. 32, no. 5, pp.
17921797, 2004.

[10] Christopher Lee, Catherine Grasso and Mark F. Sharlow, “Multiple
Sequence Alignment using Partial Order Graphs,” Bioinformatics, vol.
18, pp. 452–464, March 2002.

[11] Christopher Lee , Generating consensus sequences from partial order
multiple sequence alignment graphs, (2003)

[12] Ramu Chenna Hideaki Sugawara Tadashi Koike Rodrigo Lopez Toby
J. Gibson Desmond G. Higgins Julie D. Thompson, Multiple sequence
alignment with the Clustal series of programs, Nucleic Acids Research,
Volume 31, Issue 13, 1 July 2003, Pages 34973500.

[13] Jurate Daugelaite, 1 Aisling O Driscoll, 2 and Roy D. Sleator1, Review
Article: An Overview of Multiple Sequence Alignments and Cloud
Computing in Bioinformatics, Received 24 May 2013; Accepted 23 June
2013.

[14] Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen and Jan-Ming
Ho, A de novo next generation genomic sequence assembler based on
string graph and MapReduce cloud computing framework, Published
online 2012 Dec 7. doi: 10.1186/1471-2164-13-S7-S28.

[15] Michael C. Schatz, CloudBurst: highly sensitive read mapping
with MapReduce, Bioinformatics. 2009 Jun 1; 25(11):1363-9. doi:
10.1093/bioinformatics/btp236. Epub 2009 Apr 8.

[16] Tung Nguyen, Weisong Shi and Douglas Ruden, CloudAligner: A fast
and full-featured MapReduce based tool for sequence mapping, BMC
Research Notes20114:171

[17] Jeffrey Dean, Sanjay Ghemawat, ”MapReduce: Simplified Data Process-
ing on Large Clusters”, Google.inc.

[18] Nelesen S1, Liu K, Zhao D, Linder CR, Warnow T., The effect of the
guide tree on multiple sequence alignments and subsequent phylogenetic
analyses., Pac Symp Biocomput. 2008:25-36.

[19] http://www.fruitfly.org/sequence/human-datasets.html, 21 August, 2017

Authorized licensed use limited to: University of Florida. Downloaded on September 25,2022 at 21:07:27 UTC from IEEE Xplore. Restrictions apply.

